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Preface

The National Software Works Project has come to an end. Its "
goals were to demonstrate the feasibility and practicality of
providing users "uniform access" to services on a diverse set of .-"-
computers and operating systems. We have, indeed, succeeded in --- -

showing that such access is possible by building, running, and 0
maintaining a system called NSW, which ran on the Arpanet in one
form or another between 1976 and 1983. In its final version, NSW
connected an IBM 370, two TOPS-20s, a Multics, and several
UNIXes.

We still believe that the need to interact with different
computer systems is ever increasing in both military and
commercial sectors; and also that the lessons learned from the
construction of NSW can help those building the next generation
of these systems. This report is about those lessons we

learned. 0

The structure of this report is:

1. A survey of general systems in industry, government, -.
and academia that facilitate the sharing of computer
resources residing on physically distinct processors
connected by a network.

2. Considerations in the utility, operation, and
management of a heterogenous distributed operating
system.

3. Advice to the would-be designer and builder of a
distributed heterogeneous operation system.

4. And lastly, a discussion of the NSW technique employed 0
for organizing its (potentially) enormous name space.

Many people from many different organizations have led to the
successful design and implementation of the National Software

Works Project. From Masachusetts Computer Associates were David -

Bearisto, Regina Bolduc, Paul Cashman, Janie Cotreau, Ross
*: Faneuf, Dennis Geller, Michael Guerrieri, Kathy Knobe, Leslie
* Lamport, Mark Marcus, Collen Marcotte, Robert Millstein, Charles
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Muntz, David Presberg, Kate Russell, Kirk Sattley, Stuart .
Schaffner, Bonnie Shipman, Suzanne Sluizer, Nina Tsao, Steve
Warshall, and Michael Wolfberg.

From BBN were Jim Calvin, Paul Johnson, William McGregor,
Richard Schantz, Steven Swernofsky, Robert Thomas, Stephen Toner,and Frank Ulmer.

From Meta Information Applications, Inc. was Robert Shapiro.

From UCLA were Bob Braden, Neil Ludlam, and Denis De La Roca.

From Honeywell were John Ata and Richard Sheton.

From IITRI were Cliff Carroll, John Dobmeier, and Carol
Proctor.

From MIT was Doug Wells.

From SRI were Charles Irby, John Postel, and James White.

From GSG were Frank Bamburger, Brian Bauer, Ross Gale, Pete .
Kneiss, Doug Payne, and Norm Rasmussen.

For their very fine support, we would like to thank Richard
Robinson, Patricia Baskinger and Richard Metzger of Rome Air
Development Center.
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We would also like to thank the many Air Force Logistic 0
Command users whose many comments have helped shape NSW and this
report.

And finally, we would like to thank Paul Cashman, Lyn
Churchill, David Presberg, and Steve Schuman for their helpful
reviews of this paper.

Massachusetts Computer Associates
December 1983
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Preface to the Second Edition

In this edition the page-numbering scheme has changed, and. -

also changes in wording have been made here and there.

Massachusetts Computer Associates
April 1984
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1. Survey of Distributed System by Boonie Saiinn_

1.1 ABOUT THE SURVEY

The purpose of this survey is to explore general systems in
industry, government, and academia that facilitate the sharing of
computer resources residing on physically distinct processors
connected by a network. I am explicitly not interested in
addressing the subject of multi-computers, where more than one
processor communicates through shared memory.

The systems described here present various approaches to the
*resource-sharing solution. This presentation should also

familiarize the reader with computer network terminology, and
*with various motivations for networking. It provides a taxonomy
*of network systems, addresses important issues in network

operating system (NOS) design, and investigates ideas for future -- ~-'-
directions.

1. RESOURCE SHARING IN CENTRALIZED ANM DISTRIBUTED SYSTEMS

The need to share computer hardware and software resources
has long been recognized. This need is motivated by at least
four factors [Lister 791:

1. Sharing Cost:

It is costly and therefore impractical to provide all
necessary resources to each user separately.

2. Building on the Work of Others:

Time and effort are saved by using other people's

programs or routines.

Tesame database may be used cior several different

4Removing Redundancy:

. . . .. .:



It is economical to share a single copy of a program
(e.g., a compiler) between several users, rather than
to provide a separate copy for each user.

In fact one of the main purposes of an operating system is to
facilitate sharing by providing resource allocation, concurrent,
not simultaneous access to data, program execution, and . -

protection against corruption. These functions are clearly
provided in single computers by operating systems that support
multiprogramming.

The potential for resource sharing has increased dramatically
with the advent of computer interconnection technology.
Distributing systems over computer networks can result in the

following advantages (Lantz 80):

1. The repertoire of available resources can be increased
by making new host types accessible via the network.

2. Performance can be enhanced through parallelism, load
balancing and functional specialization, and through
the placement of processors near sensing devices and
near devices to be controlled.

3. Reliability and flexibility can be attained through . .
redundancy in communication paths and processing
elements, and through modularity of design.

4. Decomposing a problem solution into subtasks enables ...-

handling of increassed complexity of the problem.

5. Costs can be reduced in two areas. Communication
costs can be cut by preprocessing data for
transmission (thus lowering communication bandwidth
requirements) and by placing computing elements near
the data to reduce the distance data must be
transmitted. Processing costs can be lowered by using
cheaper, less complex processing elements which can be
mass produced, and through load sharing (allowing
relatively idle processors to handle some of the work
of a busy processing element).

O~o "O." - °o.S
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1.3 A TAXONOMY OF N TORKS AND DISTRIBUTED SYSTEM

Computer networks come in several forms (ala [Lantz 80]).Remote-communication networks simply move information from one

place to another. Resource-sharing networks allow resources on
one computer system to be shared by other systems in order to
reduce costs and to provide remote access.
Distributed-processing networks allow several autonomous computer .

systems to solve problems by the division of labor or by
functional specialization. As such, distributed-processing
networks are natural extensions of real-time multiprogramming
systems. Homogeneous networks tie together host computers that
share a common architecture; heterogeneous networks are composed
of different types of hosts. The component hosts may be .

geographically distant (longhaul) or close (shorthaul or Local
Area Network). Several networks can be connected together
through gateway machines to form an internetwork.

Distributed systems are referred to as being tightly coupled
if the processors share memory or have centralized resource
management. Two examples of this type of system are the CRAY-i
and the Illiac-IV. In loosely coupled distributed systems,
processors share no memory and are completely autonomous; the
Arpanet is a good example of this. Found in between are
multi-computers such as Hydra and Cm*.

1.4 APPROACHES TO RESOURCE SHARING IN DISTRIBUTED SYST S

A very common network architecture consists of one or more
function-oriented protocols built on top of a network-wide
interprocess communication (IPC) facility, and implemented at
every host in the network. Each such protocol specifies rules
for dialogue between a "server process" providing a service, and
a "user process" requesting that service. Examples of
function-oriented protocols are the Arpanet's Telecommunications
Network protocol (TELNET) and its File Transfer Protocol (FTP).

TELNET essentially enables a terminal on one computer
(computer A) to be attached to another computer (computer B) such
that terminal A on computer A functions as if it were local to
computer B. This type of protocol is often referred to as
"virtual terminal" protocol. FTP specifies conventions for the
movement of files between hosts on the network. Service commands
supported allow a user to

I .'-
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GET a remote file to a local file,

- SEND a local file to a remote file,

- APPEND a local file to a remote file,

- RENAME a file on a remote host,

- DELETE a remote file, and

- get a DIRECTORY listing from the remote host.

The protocol specifies the necessary manipulations required
to convert a file from the internal representation of the sending
machine to a number of intermediate representations which may be
easily converted to the internal representation of the receiving
machine.

The type of resource sharing made possible by virtual
terminal and file transfer protocols is somewhat limited.
Virtual terminal protocol enables a terminal user to use several
computers, but he must have a login account at each and be
familiar with the command language, naming and access conventions
of every host he wants to use [White 76) [Millstein 77] [Watson
79) (Watson 83). A user of FTP may have to select different
conversion options depending on a file's intended uses on the
receiving host. Furthermore, there is no abstraction of common
services required to do networking, so that every distributed
application must implement these functions itself.

James E. White [White 76] recognized that effective resource
sharing depends upon remote resources being accessible to
programs as well as to human users. He proposed that a
high-level application-independent framework be devised to aid in
the construction of distributed systems in resource-sharing .... -

networks. This framework consists of a network-wide protocol for
invoking arbitrary named functions on remote processors, and
machine-dependent systems software that interfaces one program to
another via the protocol. In addition, White suggests that
remote functions be thought of as remotely callable subroutines
or procedures. This view has two very appealing consequences: it
gracefully extends the local programming environment to include
remote resources, and it presents a comfortable model to

10

S..... . ....................... ............ .... .....-.... ...... ....
......... ,,..... ... .,..'........... ..... .-.. ,..,.,..-...........,..-..-.,, .. .,. ,.-...... .... ... ,............. ... ......... ....

*-.. -.- ....... -... .......-.-.....-.-..-......... ............................................. .



programmers. Both effects encourage the development of
distributed systems, with a resulting increase in sharing. White

* cautions, however, that application programmers should be aware
that...

- Local procedure calls are cheap; remote procedure calls
are not.

- Conventional programs usually have a single locus of
control; distributed program need not.

- By no means are all useful forms of network
communication modelled by the remote procedure call.
The lower level IPC facility must be used in those
applications where the procedure call model is ....

inappropriate, i.e., in cases where communication is
not transaction-oriented.

White's ideas provide the principles underlying the Xerox
Network Systems (XNS) Courier Remote Procedure Call Protocol.

Application programmers benefit from even higher-level
network protocols or services. One such service-is provided by a
battery of library or system routines that automate network
access and control functions. An example of this is the
ADAPT/DEC ("Advanced Distributed Application Programming Tools")
collection of software developed at Digital Equipment
Corporation [Peebles 80). ADAPT is intended to simplify the
construction of distributed systems and runs on top of DEC's
VAX/VMS computer system.

The use of multiple heterogeneous hosts is made easier if
they can be accessed uniformly. In its simplest form a Network
Access Machine (NAM) acts as a command processor. It translates
user coimmands like: AT HOST X DO COMMAND Y to a text file in the
command language of the appropriate host, and then sends it there
for execution [Lantz 80] [Tanenbaum 81]. The result is that the
end-user is spared from having to know the idiosyncrasies of
every system he wishes to use. A NAM offers these services
without requiring modifications to the hardware or operating
systems of the participating host computers, but can interact
with these hosts at the user interface only. A more general
solution to resource-sharing is the Network Operating System.

.-...- ° ...... .
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A Network Operating System (NOS) allows both users and 6
programs to access resources without regard to their physical
location [Lantz 80]. A network operating system plays a dual
role [Watson 79]. It solves the same problems for a set of
computers that a traditional operating system solves for a single
processor. An NOS turns a collection of hardware and software
resources into a coherent set of abstract objects, and supports •
their naming, access, sharing, protection, synchronization and
intercommunication, including error recovery. It multiplexes and
allocates these resources among many concurrent applications. In
addition, a network operating system must deal with the problems
that arise from the distributed nature of the system, and
possibly from the heterogeneity of its component systems. These
include translation problems, support of distributed service and
resource structures, potentially more difficult error recovery,
multiple copy file or database update problems, and multiple
controlling administrations. Special efficiency problems must be
addressed and solved. -

.

There are a number of important issues that can be used to
characterize distributed systems. These are described below
(after [Lantz 80]).

1. General Purpose Vs. Special Purpose

Is the system oriented toward general computer
resource sharing, or is it intended to provide limited
sharing for a particular application?

2. Guest Level Vs. Base Level Implementation

Is the NOS layered on top of existing computer
operating systems, or built right on the bare
hardware? In his book, Computer Networks [Tanenbaum
81), Andrew Tanenbaum distinguishes two categories of
network-wide operating systems. In what he calls a
network operating system, each host continues to run
its old (non-network) system, with the network
operating system implemented as a collection of user
programs running on various hosts. Examples of this
type of system are The National Software Works and the
Desperanto System. (Both are described later.) A
major advantage of this approach is that it does not
invalidate existing software. The other approach is

12
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to throw away existing operating systems on
constituent hosts and start from scratch with a single
homogeneous distributed operating system. In a
distributed operating system all activity is NOS
activity; a guest-level network operating system
allows both NOS and non-NOS activities.

3. Network Services Provided

It is helpful to recognize that network services can
be provided to users on two fronts. Services
available to end-users at system monitor level can be

distinguished from services provided to application
programs as system calls or library routines. Some
systems we will look at support one type of interface
and not the other, but most provide both.

J4. Visibility of Distribution

How obvious is the distributed nature of the system to "
the user? Does the system allow the user to access
local and remote resources transparently? Transparent
access makes programming easier, and means programs
needn't be changed when resources move around, but may __"_..-

also seduce developers of distributed systems into
making expensive remote calls needlessly. What naming
scheme is used to identify objects or resources in the
system? Global location-independent object names
conceal the network, and require some sort of name
server to map them into real addresses. If the name
server is centralized it may introduce overhead with
each file open, and can become a performance
bottleneck. In addition, the system is subject to
instability because the name server could be
vulnerable to failure. Replication and/or
distribution of the name server can ease reliability

and performance problems, at the cost of
implementation complexity [Rowe 82]. A common
alternative to host-independent object names is a
hierarchical naming scheme where host identifiers are
included in all object names. This strategy makes no
attempt to hide the system's distributed property. To
what degree are failures in components of the
distributed system visible to the user? Do error
messages to users have to be based upon distributed
systems notions (e.g., "The terminal handler is up,
but the editor is down")?

13

AL

. . . . . . . . . . . . . . .. . . . .

o - - o • o - o-.. . .. .o. .oo. -. ........ ..... .-. .. . .-.. .o - . - . oO .- ,- ---



5. Reliability

Reliability measures are generally expensive, but
necessary for any production system. Replication of
control functions such as the name servers, as well as
of critical databases increases reliability and
availability, but at the cost of complex consistency 0
procedures.

6. Protection

What type of protection is provided for system
objects? Is access control associated with an object
or a user? How is protection managed on a global

* basis, e.g., how are capabilities protected?

7. Resource Selection

Who makes resource selection -- the user, the system,
or both in combination? In the latter cases, is
selection based on dynamic network conditions or
static user profiles? Perhaps a system administrator
has the authority to change the definition of a
command to use a resource on host X'instead of on host
Y, in a fashion analogous to database administration
practice.

8. Resource Management

When resource management is logically and physically
centralized, the effect of the distributed environment
is minimized and implementation is simplified. But

the system then becomes vulnerable to failure of the2
controlling site, and performance can degrade because
of required interhost communication every time the
control function is required. Both of these problems .
can be reduced if the control function is replicated
at many sites. Alternatively, the control function
can be fully distributed by supplying every entity
with its own implementation of the function. This
breaks the dependence of one host on another and
provides better performance, but adds complexity to
the system design, implementation and operation.

9. Extensibility

. . . .



A network operating system should not be expected to
spring full-blown into existence [Watson 79] [Fletcher 0

80], but instead be designed to encourage new
application development. Each new application should
not have to tackle anew the problems associated with
distributed implementation; the system should provide
an implementation layer of functions commnon to a broad
range of applications. Also under this heading comes
the question of host participation. Can hosts
participate in the NOS in varying degrees?

10. System Model

There are two distinct models associated with
distributed operating systems [Tanenbaum 81]. In the
object model, the world consists of various objects,
each of which has a type, a representation, and a set
of operations that can be invoked on it. To be able
to invoke an operation on an object, a user process
must possess a capability (permission) for that0
object. It is the duty of the operating system to
manage capabilities and to allow operations to be
carried out on objects. In the process model, each..
resource is managed by some server process, and all
the operating system does is manage interprocess
communication. In many cases servers can run as
normal user processes. There are two distinct :*c.

interprocess communication (IPC) schemes: message. *

passing and function or procedure calls. When message
passing IPC primitives are provided, any process can
communicate with any other process by exchanging
messages. The procedure call model of IPC can be
built upon message passing, and provides the user with
the same semantics used in local procedure calls. In
both cases synchronization is provided by blocking
sends and procedure calls (sender or caller suspends
execution until the receiver or called procedure
finishes and returns control), and parallel execution
can be achieved by nonblocking sends or procedure
calls. In the latter case either an interrupt
mechanism is needed to alert the sender (caller) that
the operation has finished, or the sender (caller)
must check a status indicator for procedure
completion.

11. Administration



Is administration centralized or distributed among the
participating hosts? Must a user have a private
account on each host?

12. Error Recovery

How does the system respond to hardware and software
failures? Does it support atomic transactions (i.e.,
transactions that are guaranteed to be performed to
completion or not at all)?

1.5 SUEL I SYSTEMS

The task of categorizing systems for the network connection
of processors on shared computer resources is rendered difficult
by the fact that features of such systems overlap. Such systems
still seem to fall into different categories which we have
designated for the purposes of discussion as follows.

- Extensions of centralized operating systems,

- Systems involving sharing among heterogeneous hosts,

- Systems with decentralized resource management,

- Communication-oriented systems, and

- Integrated systems.

' 1.5.1 Generalizations of Centralized Operating Systems

A network operating system is sometimes devised as an
extension or generalization of a popular centralized operating
system. This approach minimizes the amount of support software
that must be developed, and at the same time eases transition

*: from a single-host to a network environment [Rowe 82]. Examples
" of this approach given here include the RSEXEC and COCANET UNIX.

1.5-1.1 RSEXBC

RSEXEC [Thomas 73], developed by Bolt, Beranek and Newman,
Inc. during the early 1970's, is a Resource Sharing Executive for

16



homogeneous TENEX hosts on the Arpanet. (TENEX is the basis for

today's TOPS-20 operating system.) It is implemented thereon as
a family of guest-level processes with no priviledged code.
RSEXEC increases the pool of computer resources available to
users to include those of all TENEX hosts on the network. The
system includes a command language interpreter (syntactically
similar to the single-host TENEX EXEC) which extends the effect
of user commands to all such TENEX hosts, and a monitor call
interpreter that likewise extends the effect of system calls.
Together these end-user and program interfaces give the user
uniform access to local and remote resources, and isolate him

from having to deal with network protocols directly.

The RSEXEC file system implements a file name space that
spans host boundaries, enabling users to reference files on any
participating TENEX host. File names are hierarchical pathnames,
in the TENEX style, extended to include host names. RSEXEC - .
provides a mechanism called a "user profile" wherein users can
specify context information to be used by the system for partial
pathname recognition.

The user profile can also include a list of file directories
that, taken together, define a user's "composite directory". ,

Directory information for each file listed in each of' the
component directories is periodically copied to the local site,
after acquiring it at the start of a user session. These files ..

can be accessed without incurring the overhead of a remote
directory search. When files outside the range of the composite
directory are, referenced, remote directory information is
acquired by RSEXEC.

Users can take advantage of the distributed nature of the
system by having RSEXEC maintain images of files at multiple
hosts. In fact, RSEXEC was used as a tool for distributing
software updates to the family of Arpanet TENEX systems.

1.5.1.2 COCANh3T UNIX

The COCANET is a local area network at the University of
California, Berkeley, that is designed to provide shared access
to computer resources available on several different computers in

the Department of Electrical Engineering and Computer Science.
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Hosts connected to the network are DEC PDP-11s and VAXs running a 0

variation of the UNIX operating system [Ritchie 78] called
COCANET UNIX [Rowe 82).

Standard UNIX has been altered in such a way that a user 0
logged in at a host in the network can access all network
resources using the same commands and programs that were used in
a single processor environment. COCANET UNIX extends the UNIX
file system name space by including the host name in each
resource name, so a user can refer to a remote file by giving its
local hierarchical pathname preceded by the name of the host on S
which it resides. He can change his working directory to one

that is remote with the same command he used to change between
local directories in single-site UNIX. Existing programs
-- those developed under centralized UNIX -- can run on COCANET
UNIX without coding changes. Local and remote files alike can be -

accessed with the standard UNIX file abstraction. Process S
creation primitives (i.e., 'fork' followed by an 'exec') have
been generalized to permit the execution of a remote program, and
the standard UNIX interprocess communication mechanism (pipes)
has been modified to permit communication with remote processes.

In addition to supporting existing UNIX applications, COCANET
UNIX incorporates a small number of new features that facilitate
the development of distributed applications. Several specialized
message-oriented IPC mechanisms that support communication within
a single processor or among distributed processors, have been

introduced to make up for the shortcomings of standard UNIX pipes
in a distributed environment, namely:

- Low throughput,

- Only processes with a common parent can communicate,
and

- . -. ..

Processes block on reads when no data is available.

UNIX is a trademark of Western Electric
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Three forms of interprocess communication are supported. A
process-to-process "datagram" service supports transaction-
oriented communication, useful when one or a few messages are
sent to a well-known server process requesting a service on j
behalf of a user. A process-to-process virtual circuit service
("unicast") supports longer conversations between processes, and
is similar to a UNIX pipe. A "multicast" channel transmits a
single message to multiple destinations.

COCANET UNIX provides its component hosts with "site
autonomy", meaning that each host controls access to its own
resources. Security comparable to that of standard UNIX is -

provided by requiring an explicit login procedure to a remote
machine the first time its resources are requested. A simple
recovery mechanism is used to detect when a remote machine
crashes and to notify all processes which were using resources on
the machine that it has crashed.

1.5.2 System with Decentralized Resource !wmqpsmt

It is the philosophy of some (including [Clark 80]) that
adequate sharing can be provided without global resource naming
and management, and without support for elaborate features like
replicated files. Two examples of systems that embrace this
philosophy are the Apollo Domain System and Rochester's
Intelligent Gateway.

1.5.2.1 Apollo Domain

The Apollo Domain System (Apollo 81a] (Apollo 81b] (Nelson
83] provides general-purpose sharing capabilities for local
networks of personal workstations. The system is designed as a
base level operating system, but can accommodate various machine
hardware architectures.

The Apollo Domain provides a global namespace that spans the
entire distribution of files across the network. File names are
hierarchical and include the name of the node on which they "
reside. Users share single copies of programs and data files
(i.e., the system does not support object replication) through a
network-wide virtual memory system. Remote files are mapped from
their physical address space to the virtual address space of the
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processor that is requesting them. The actual data is then
transferred an a result of demand-paging.

The Apollo Domain user environment is further shaped by the
hardware environment. A bit-map display terminal is associated
with each user workstation. A user can divide the display into
multiple windows and execute an independent program in each,
switching among them at will. This ability for concurrent
activity on the part of the User and the system increases
productivity and the effective use of the network environment.

1.5.2.2 Rocheter's Intelligent Gateway

Rochester's Intelligent Gateway (RIG) [Lantz 80] [Lantz 821
is the University of Rochester's distributed system composed of
heterogeneous hosts interconnected via multiple networks. The .-

system has been evolving since 1974. It is implemented at base
level on the gateway machines, and as guest-level extensions to.-
other hosts. RIG was designed to provide access to all resources
on the network from a single terminal. An equal amount of

attention was paid to the end-user and program interfaces.

The RIG file system is visibly distributed in that it has a
hierarchical namespace extended to include host name. Users and
programs can access local and remote files with the same -

semantics. There is no central catalog in RIG, and replicated
files are not permitted.

RIG allows users to access existing services or tools through
three mechanisms. All available remote tools can be accessed

* using a virtual terminal protocol to attach the user's terminal
to the appropriate remote host, then accessing the tool with the

p conventions of that host. For certain hosts, RIG provides access
- service analogous to that provided by Network Access Machines.

The highest level of service is provided for tools that have been
installed into RIG. Installed or "encapsulated" tools (an

* ~extendable set) are separated into tool interface and tool ~. .-

service components. While the service component always executes
on its own (possibly remote) host, the tool interface component-
can run on the same host as the user to ensure fast response.* In. -

addition, users may tailor their own command interfaces for ---

frequently-used tools.
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Concurrent work is allowed and encouraged by RIG. Because of
the RIG Virtual Terminal Management System, users can allocate
separate windows of their display terminal to separate
independent jobs. A complete virtual terminal is available in
every window of the screen.

RIG's software architecture follows the "process" system
*model. The world consists of "resources" such as files and
* devices, that are managed by "servers" and can be accessed by

"clients". Each server deals with its resources in its own way,
and provides a message interface to other processes. Clients and
servers communicate by passing messages.

In RIG, reliability is based solely on mutual suspicion;
there is no replication of databases or control functions.
Resource management is decentralized, with user and system
resource selection. Administration too is decentralized, with
each RIG host being managed by a logically independent
organization.

1.*5.*3 Sharing Among Heterogeneous Hosts

There are a few systems discussed here that are explicitly- -

designed to facilitate sharing among heterogeneous hosts. These
* include NSW, Desperanto and CRONUS, and LINCS.

* 1.5.3.1 The National Software Works

The National Software Works (NSW) [Millstein 77] provides
* terminal users, programmers and project managers uniform access

to tools or services on different heterogeneous hosts. The
system was designed and implemented during the mid- and-late
1970's as a Joint effort on the part of Bolt, Beranek and Newman,
Inc., General Systems Group, Inc., Honeywell, Massachusetts
Computer Associates, Inc., MIT, SRI International and UCLA. The
project was supported by the Department of Defense through ARPA
and the Rome Air Development Center. Its initial implementation

h is on a collection of heterogeneous hosts on the Arpanet,
including machines running the TOPS-20, IBM MYS, MULTICS and UNIX
operating systems.
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NSW provides its users with a unified tool kit distributed
over many hosts, and a monitor that provides

- a uniform command language to all tools, -.

- a global file system, and

- a single access control, accounting and auditing

mechanism.

NSW supports existing tools (those developed for single-site
use) that have been installed into the NSW toolkit. A single NSW . .
account permits access to installed tools on all NSW hosts,
sparing the user from having to obtain login accounts on multiple
hosts. After logging into NSW, either from a participating host
or directly from an Arpanet TAC, a user can access tools on •
different hosts without needing to know about various host
operating systems with their differing command languages, file
accessing conventions and login procedures; knowledge of how to
use the tools needed for a particular job suffice. NSW supports
the coordinated use of several tools (where the output of one -

tool may be used as input to the next) by providing transparent .
file transmission and reformatting (translation of data from the
representation of the sender to the representation of the
receiver).

The NSW File System provides a central catalog of objects. •
Objects consist of files and services. Object names are
location-independent and non-hierarchical. Access permission is
associated with the user rather than with the object to be --

accessed. The NSW file system is not based on dedicated on-line
storage, but instead uses facilities contributed by various host .
operating systems. Users need not be familiar with file access S
conventions on these storage hosts.

The NSW system itself is implemented as a collection of
processes or components, distributed across the network, which
cooperate to provide NSW services. Coordination is provided by 0
the NSW monitor, called the Works Manager, which at least
conceptually can be distributed as well. NSW is built on its own
interprocess communication facility (MSG); this eases its
implementation on a variety of network systems. Each host in NSW

22

,* °
| -, • ° * . , °o • .- , . . -+,-. ", °° ° ° ° , , , , . ,,.- - ° .. .. . ,. ' • ." - .. •.•°. •°. _-.. . . .- . .. .°.



°.

has an MSG-server process. The user interface is provided by an 0
NSW Front End component; there is one incarnation for each active
user. A Foreman process is attached to each active tool and
provides a tool execution environment. One of its objectives is • -
to ensure that the tool refers to global NSW objects instead of
objects local to the tool (except, of course, for files which are
adjuncts to the tool's code, such as help files!). Each host
providing NSW file storage has a File Package to handle
cross-host file transfers.

1.5.3.2 Desperanto - -

Desperanto [Mamrak 82a] [Mamrak 82b) [Mamrak 82c] [Mamrak 83] 9
is a network operating system that has been under development at
Ohio State University since fall, 1980. It serves as a vehicle
for the research general-purpose systems supporting resource
sharing in networks of heterogeneous hosts. One of the goals of
Desperanto is that solutions be generally applicable and require
no changes to local operating systems or to the code that
implements the sharable resources.

Desperanto provides a consistent and coherent view of the
network environment to end-users, and a set of common network
services to application programs. Users log into Desperanto from
their local host operating systems to access tool modules that
have been installed into the Desperanto tool bag. Application
programmers can tailor "module interfaces" to integrate modules
that have been developed for uniprocessors into the distributed
environment. A module interface specifies those operations which
the module provides to the system, those operations the module
requires of the system, and other module-dependent information
such as data types, conversion information and exception-handling
routines.

To aid the installation of existing modules Desperanto
supports a synchronous remote procedure call IPC facility. When
such a module attempts to call on an operation provided by a
remote module, Desperanto intervenes and uses the remote
procedure call mechanism to make it appear that the operation was
performed locally. In addition, Desperanto supports a
message-passing view of interprocess communication for new
modules developed to take avantage of the distributed nature of
the system.

*" 23
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The Desperanto system relies on the work of others to provide e
a distributed file system and bases itself upon the LINCS
transport layer (discussed in [Fletcher 821). There are three
primary areas of research being pursued by the Desperanto -

project, namely:

1. Guest Layering on Local Operating Systems

2. The Tool Installation Problem

3. Developing Distributed Applications

The first of these areas is concerned with the layering of
distributed systems on top of heterogeneous local host operating
systems. These guest systems must rely on local architectures to
provide such primitive services as local and remote interprocess
communication. The work here centers around the development of a -
virtual interface for local IPC, and of a separate virtual
interface for remote IPC.

The second area is concerned with solving the problem of
supporting existing single-site tools in a distributed
environment. References to names of remote objects must be
trapped by Desperanto during tool operation so that objects may
be made local to the tool in a manner that is transparent to both .-

users and the tool. Complexity is added when both users and
tools can name objects during tool execution and when tools allow •
for dynamic naming of objects during their execution. The system .
must provide facilities for the conversion of data from the
internal representation of one host to that of another when
pipelined tools reside on heterogeneous architectures. This
conversion is of high-level data structures such as arrays,
records, tables and trees, and of well-understood low-level
objects like characters and integers. Research into the 0
exception-handling facilities needed in a distributed environment
is being done, and into ways of providing those facilities, is "

' being carried out as well.

The project team has also been designing new distributed
applications to test the facilities of the Desperanto system.
These currently include a distributed measurement facility and a "
calendar scheduling and maintenance system.
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1.5.3.3 Cronus

Cronus [Schantz 82] (Hoffman 82) [Schantz 83] (MacGregor 82)
is a general purpose system designed by Bolt, Beranek and Newman,
Inc. to facilitate resource sharing among a "cluster" of nodes on
a local area network(LAN). The Cronus cluster model includes a
communication subsystem that interconnects two types of nodes:
Cronus cluster hosts ("Generic Computing Elements", or "GCEs",
which are dedicated. to Cronus functions), and application hosts.
Application hosts, which may be heterogeneous, require some
operating system enhancements, and can participate in Cronus with
a variable degree of integration. The Cronus system can be
accessed from a variety of *points including personal 0
workstations, general-purpose mainframe computers, and the
internet. GCEs share a common architecture and thus provide a
replicated resource, i.e., Cronus system modules can be
replicated on several nodes for increased reliability and
availability. Cronus is based on a virtual local network (VLN)
that stands in place of a direct interface to the local area 0
network. This feature allows implementation on various local
network architectures with relative ease. 1/O services are
provided to permit the exchange of data 'between distinct Cronus
clusters, and between a Cronus cluster and the internet.

From the end-user's point of view, Cronus provides a single
* account and uniform access to all integrated system services, a

distributed file system and a coherent execution environment.
Cronus differs from NSW and Desperanto in that it supports only
those applications written specifically for use with Cronus; .

existing pre-Cronus software is not supported. The system
provides facilities for data translation between heterogeneous
hosts, and supports interactive access to remote programs and
multi-host pipeline processing (the chaining together of tool
executions, such that the output of one tool becomes the input of
the next). Cronus incorporates its own electronic mail system.
End-users can work on several tasks at a time if they use
Cronus-supported multi-window CRT terminals.

Cronus presents an object-oriented model to end-users and
programs. Object management (cataloging and manipulation) is
provided for Cronus objects such as users, directories, files, 7
programs and devices. Objects are recorded in the Cronus
Symbolic Catalog, which implements a cluster-wide hierarchical
location-independent namespace. The catalog maps user-oriented
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symbolic names into program-oriented identifiers. Cluster-wide 0
user identifiers and user authentication forms the basis for
uniform access control to all Cronus resources.

The Cronus File System supports several (including 0
replicated) file types, and allows Cronus files to be linked to
each other or to external (non-Cronus) files.

1.5.3.4 LIM

Richard W. Watson and John G. Fletcher at the Lawrence S
Livermore Laboratory have proposed a comprehensive network
architecture designed to support effective resource sharing
through the development of distributed programs. This
architecture is called LINCS (Livermore Interactive Network
Communication §ystem) [Fletcher 82)] [Watson 82] (Watson 83O].

The LINCS architecture is capable of efficient implementation
as a base (native) operating system or as a guest layer on top of
existing operating systems that support adequate interprocess
communication. Systems implementing LINCS as a guest service
allow access to resources from both their native and LINCS -
environments.

The network operating system model presented by Watson and
Fletcher provides a coherent view of distributed resources to
processes, programmers and terminal users. Network and location . --

transparency is emphasized, so local and remote resources are
accessed identically in application programs. It is, however,
possible to discover the location of an executing program, and
for a programmer to influence where a particular program should
execute or from where a resource is to be obtained. Later, when
the issues are better understood, automatic allocation and
location on a global level will be added to the system. The
development of distributed applications is further facilitated by
the abstraction of common network-interaction issues into
well-defined conventions and protocols.

The NOS system model appears to be a hybrid of the object and
process models. Objects such as processes, files, directories,
devices, etc. are called 'resources'. Resources are managed by
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'server' modules which maintain the abstract representation of
the resource, and implement allowable operations on the
representation. Interprocess communication is message-oriented.
A given process can act as a 'customer' or server of a resource
at different times (so that a server of one resource can be a
customer of other resources).

A process accesses a resource by sending 'requests'
containing operation specification and parameters to the
appropriate server. The server then satisfies requests by
accessing data structures local to it or by sending requests to
other servers for help in servicing the original request. When a 0
request is satisfied, the server sends 'replies' containing (a)
indication of success or failure, and (b) results if any. LINCS
supports efficient transaction (minimum delay and message
exchange) and session (extended conversation) communication
modes. Synchronization is provided in the form of blocking and
non-blocking sends and receives. 0

The LINCS system supports two levels of resource names.
High-level human-oriented pathnames are implemented by
directories and directory servers. Low-level machine-oriented
names are "capabilities". In addition to naming resources,
capabilities are used to validate access to resources, to
identify specific transactions uniquely, and to indicate sources ..-

and sinks of information, as well as places to which replies are
to be sent. Resources are shared by exchanging capabilities in
messages.

Capabilities are used for protection, but the capabilities
themselves must be protected, since no asssumptions can be made
about the ability of the participating autonomous host operating
systems to guard against attempts to forge or insert stolen
capabilities into the system. In the LINCS NOS, capabilities are
stored in user-process space and protected by embedded passwords
and encryption. In addition, the system supports controlled and
uncontrolled capabilities; a resource server can choose to accept
either or both types.

The LINCS architecture supports NOS-wide error recovery at
the IPC level.
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1.5.41 Camuniatio-Ori td. Systems 0

Presented here are two operating system kernels organized
around the abstraction of communication. They form a basis for
higher level services provided by a network operating system.

1.5.4.1 TIl

TRIX [Ward 80] is a comunication-oriented kernel operating
system designed at MIT for use on a network of interconnected
homogeneous processors. It is a generalization of many important --

features of the UNIX and MULTICS operating systems, including 0
hierarchical directories, pipes and virtual devices. The
functions provided by TRIX are a superset of those provided by
UNIX.

The TRIX system semantics revolve around a stream -
communication mechanism rather than around passive objects like
files. The two fundamental elements in the TRIX system model are
processes and streams. A process comprises active computation
and state information. A stream is a full-duplex communication
path between processes, over which pass uninterpreted data and -
control messages.

Despite their full-duplex nature, streams are asymmetric,
having a "handler" end and one or more "requestor" ends. Streams
incorporate a capability-like mechanism protected by the system.
Capabilities are passed between processes via "request" and S
"reply" messages. Communication along streams is asynchronous
and non-blocking, so a process can have several active
transactions at once.

System objects like files and devices are implemented as
processes that react to traditional control messages (received on
attached streams) in conventional ways and respond by sending
control and/or data messag *ong different attached streams.
The important point is that tn.3 semantics are associated with the
streams, independent of the attached processes which implement
them. Any system object can be transparently replaced by any -
other that mimics its communication patterns. Thus TRIX allows
uniform and transparent access to local and remote objects.
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TRIX names are hierarchical, and associated with streams
rather than with objects or processes. Directories are processes
that perform the name-to-stream mapping.

The TRIX approach to the implementation of passive objects
like directories and files as active processes results in serious .
efficiency problems. TRIX performance is speeded up through the
implementation of common system functions as highly efficient
processes. The untyped nature of most of the data communicated
over streams prevents the TRIX system from being implementable on

a collection of heterogeneous hosts.

1.5.4.2 ACCENT

ACCENT [Rashid 81] is a communication-oriented operating
system kernel developed at Carnegie-Mellon University as the
basis for two quite different distributed computing projects... S

ACCENT supports a loosely-connected collection of host machines.
Each host on the network runs the ACCENT kernel which provides
the following functions:

- Interprocess Communication .

- Virtual memory management

- Process management

- Process creation and deletion

- Access to devices through IPC

- Support for language and application-dependent
microcode

- Rudimentary support for process monitoring and
debugging

The system can be viewed as composed of a number of layers.
The bottom layer is the kernel, and each successive layer builds -
more and more comprehensive services upon the next lower layer.
Layers are glued together through interprocess communication.
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0
In ACCENT IPC is message-oriented; its basic abstraction is

the "port", a protected kernel object. Ports cannot be directly
manipulated by processes; rather, a process requests
"capabilities" from the kernel to send messages to a port and/or
extract messages from it. The capability is a local name for a
system object, much like a file descriptor in conventional
operating systems. Ownership and access to a port can be passed
in messages, but not shared.

Communication is extended transparently to remote hosts by
network server processes. The location of a port can change, as
can the body of the process serving it, without affecting
customer processes using it, so long as interface arguments are
maintained. This allows transparent process migration.

Communication speeds in ACCENT are much better than those
found in many communication-oriented kernels. Virtual memory,
file storage and interprocess communication are integrated in .

such a way as to provide IPC through cross-network paging.

1.5.5 Integrated Systems

O" 1.5.5.1 Eden

Eden [Lazowska 81) is an integrated distributed system being
developed at the University of Washington. It aims to combine 0
the benefits of distribution and integration by using local area
network technology and an object-oriented software environment.

Eden is intended to run on a short-haul network of homogeneous
personal computers.

Its current hardware architecture consists of a number of
node machines (based on the Intel iAPX processor) with bit-map to
display terminals interconnected by an Ethernet local area
network. Eden allows various configurations of the basic node
type, but does not in general support heterogeneous nodes.
Foreign machines can be interfaced to the system through Eden 9
nodes, however. In this case users on Eden nodes can access
services on the attached foreign node, but the reverse is not
possible.
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0

environment. An object encapsulates a resource, and consists of..............
a unique name, a representation (data part) and a type, which
defines the set of operations that may be invoked on the object
to manipulate its representation. Objects (including users)
access other objects using capabilities, which contain the name
of the target object and access rights. The Eden user sees a
location-dependent address space; it is the responsibility of the
Eden kernel to resolve object names into location- dependent
addresses and to forward invocation messages to objects whenever
referenced. The semantics of object invocation are those of a
blocking procedure call: the user or invoking process suspends
execution until the requested operation is complete. A user may
specify in the invocation a timeout period if he wishes to be
notified when invocation is not completed within the specified
period of time. Asynchronous execution (non-blocking
invocations) are also supported.

The internal semantics of Eden objects (dealt with by the
Eden system programmer) are much more complex than the external
(user) view of these objects. Though to the user Eden provides a
location-independent address-space, in reality location may be
critical to system performance or reliability. The details of
object location, as. well as those of concurrency and error
recovery are encapsulated within each Eden object. In Eden,
objects are capable of obtaining information about their location
from the kernel, of making location changes, and of being

1' replicated and cached at multiple sites to increase performance,
availability and reliability.

1.5.5.2 LOCUS

LOCUS [Popek 81) is UCLA's network-transparent high-
reliability, high-performance distributed operating system. A
prototype implementation is built on a number of PDP-1ls

* connected by a variety of Ethernet-like local area networks. The
component machine architectures vary widely in processor power

* and storage capacity; in fact, LOCUS can accommodate processors
with no local file storage at all.

Each LOCUS host exercises a fair degree of autonomy. It is
master of its own resources and can operate gracefully alone. To
a great extent maintenance of the internal consistency at any
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given machine does not depend on the correct operation of any 0
other site in the network.

LOCUS is an integrated system, in the sense that each machine
runs the same software. Each is a complete facility with a --.

general file system, a name interpretation facility, etc. The 0
LOCUS operating system is application-code compatible with the
UNIX operating system.

LOCUS is a network-transparent system, in that all objects -

are accessed in an identical manner, without regard to object -- -
location. LOCUS supports a network-wide location-independent
naming structure. End-users and programmers refer to LOCUS
objects with high-level names. These names are globally unique
and form a single uniform naming tree, in which each object is
identified by its pathname. There is no notion of object .
location in these pathnames. Low-level names are also globally 0

unique and can accommodate replicated files.

The LOCUS claim for high-reliability and availability is
supported by the system's facilities for object replication and -
atomic update. LOCUS automatically replicates resources to the
degree indicated in associated reliability profiles. Copies of a
replicated file can be substituted for one another with no
visibility to users or application programs. LOCUS supports file
committing, such that for a given file and a set of transactions
against that file, one can be sure that either all of the updates -

are done, or none of them are done, even in the case of network
or mode failures. Updates are propagated to other sites by
demand-paging. When a site is disconnected from the network, it
can still process local work. Furthermore, when the network is
completely partitioned, and copies of a replicated resource are
found in more than one partition, the resource can be modified at
the various partitions. These capabilities are made possible by .
a centralized LOCUS synchronization mechanism with distributed
recovery. .

LOCUS provides a level of system performance that compares
favorably to stand-alone UNIX. Several design decisions led to
such good performance.
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- Specialized problem-oriented protocols were designed to 0
handle common operating system functions (e.g., reading
a file), and expensive redundant low-level network
protocols were dropped.

- A very fast process mechanism for serving network
requests was implemented inside the operating system 0
kernel.

- Special handling is provided for local operations, so
that network support is sidestepped.

I°
- Lastly, the integrated system design speeds up
processing since operating system functions are
available locally to every executing process, no matter
where it resides.
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2. On the Utility of Distributed System -- by Charles Muntz 0

2.1 Rationale of the User Model

The National Software Works (NSW) is a comprehensive effort
aimed towards "...providing programmers access to tools on
different hosts...". These tools are essential in their

"...attack on the cost and complexity of developing and
maintaining software...". The difficulty in managing programming
"...lies not in the (absence] of suitable tools, but in their

(non-]availability...". The overall objectives of the NSW, then,
"...are to provide programmers with a •

- Unified tool kit -- distributed over many hosts -- and
a

- Single monitor with

* uniform command language,

5 global file system,

single access control, accounting, and auditing
mechanism."

The above quotations from a recent NSW report describe user
needs as perceived in the mid-1970's. There has been - O

considerable technological evolution since this original problem
statement. A review of the NSW experience should therefore begin
by examining that statement for relevance to contemporary issues,
since significant technical issues have been solved by
developments in somewhat unrelated areas (just as the need to

optimize program performance on a computer with drum main memory S
was obviated by the introduction of random access memory, and

software constructs for overlaying programs and for managing

large data structures in a relatively small amount of real memory
became less critical with the advent of virtual memory
environments). So, is the problem which NSW addressed still
current?

The theme of the original problem statement is provision of
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integrated tools as the key to reducing costs and coping with the
complexity of the software milieu. The emergence of UNIX(tm) as
a major computing environment testifies to the acceptance of -

* tools and illustrates the utility of their integration. ARPAnet
hosts offer powerful tools too, but they are difficult to access,
and little attempt has been made to integrate them.

Our experience with use of the NS3W system indicates that the
audience for tools is much wider than suspected. Indeed, it
should be argued that anyone whose productivity is enhanced by
access to computing assistance should be included. Just as the .
implementor needs a superior code analyzer and his manager a good
configuration tool, so also does the circuit designer produce
more with the right CAD/CAMl facilities, the technical writer with
proper documentation tools, and the program manager with good
tools for forecasting personnel availability. These latter
examples belong in the category of applications software, a field .0
which has experienced considerable expansion over the past ten
years. We will not attempt to change the meaning of the word
"tool" to include applications software; instead we will label as
a "service" any sort of productivity-enhancing computing
assistance. The first step in revising the NSW problem statement
is to focus on providing a unified kit of services. We seek a

* unification of distributed services of the kind exhibited by UNIX
tools when the output of one is piped to the input of another.

The NSW report next asks how a project can obtain appropriate
tools. "If some essential tool does not happen to have a version
which runs on a computer to which the project has access, the
manager is forced to choose among the expensive alternatives of
(1) foregoing use of the tool, (2) undertaking to acquire or
produce a surrogate tool on his hardware, or (3) purchasing
[access to) a computing system on which the tool does run." The

Ptool of dubious utility would probably be abandoned. A valuable
* one might be ported to one of the project's machines, if this
* could be done in a technically acceptable and economical fashion.

"NS3W tries, in effect, to make alternative (3) more
attractive..."

One technological event could render this reasoning obsolete:
* the emergence of a single computing architecture capable of

accommodating the myriad of systems available today. That
*architecture would necessarily be amenable to excellent
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implementations of systems for data processing, scientific
computing, interactive environments, etc. If one could build
such a machine at all, the problem of providing a unified kit of
services would be vastly simpler than the NSW problem statement
envisions. An homogeneous network would be sufficient to link
enough processors together to do almost any job. If one could
also build such a machine to any desired scale, all services
could run on the same host. Such a breakthrough would offer one
(indirect) solution to the original problem.

Today's computing is done on machines of disparate
architecture. Seeking the best in data processing often leads to
machines of one manufacturer, whereas seeking the best in
interactive environments, in office automation systems, and in
scientific computing often leads to machines of three other
origins. The architecture and operating systems of these
machines are as specialized as the problems which they address.
Announcements of new architectures are appearing at an increasing
rate: data collection systems, graphics systems, and back-end
database machines to name a few. This trend will continue.
Increasingly specialized machines will also be introduced, thanks
to the twin economic factors of decreasing hardware costs and
increasing productivity in design and manufacturing attendant in
CAD/CAM technology. Convergence on an ultimate system
architecture therefore seems highly unlikely. The unified kit of
services should be expected to require hosts of differing
architecture; so the solution to the problem addressed by NSW
necessitates distributed processing on non-homogeneous hosts, as
before.

User access to the heterogeneous network is a challenging
problem. If users have terminals which can be used
interchangably on the network's hosts, the problem is reduced to
one of establishing and maintaining terminal connections to these
hosts. However, a significant portion of the diversity in

* computing systems lies in their terminal-handling disciplines.
* Systems which excel in forms management are based on screen-level

operations; on the other hand, highly interactive systems involve
their mainframe in the processing of each keystroke. Since many

* desirable services have such rich interfaces with the user's
terminal, access to a terminal familiar to the tool is
prerequisite to satisfactory usage. Another step in revising the

* NSW concept is then to widen the view of devices through which
users access the system, and to examine carefully the match

37



between the user interface and the complement of services to
which he wishes access.

Since a heterogeneous network is the only system capable of
offering a unified kit of services, we need to examine
requirements for an operating system for the extended computing0
environment. Without a system such as NSW, a user could try
"using [for instance] the Arpanet in straightforward fashion, by
using Telnet and FTP to access hosts other than one's 'home'
system, which does indeed give you a much wider domain of action,
but nonetheless:

-You need an account on each host...

-The operating system on each host is different, so you
must learn different login procedures, command -.

languages, interrupt characters, file naming
conventions, etc...

-Files output from one tool ... are to be input to another
tool... This involves at least network transmission
and usually file reformatting..." --

The burden this places on training, document acquisition, and
*accounting, as well as the overhead required for managing

non-essential bulk data transport, makes this solution very
* costly.

As we noted earlier, another concern should be cited here:
the degree to which the local host's usual terminal is

*appropriate in heterogeneous environments. Use of the word
"host" now appears to have the undesirable effect of suggesting
that system mainframes define user interfaces. In fact, user
interface hardware is of significant importance in shaping the

*operating environment in which services are offered. Since NSW
focused on the problem of accessing tools, we wish to adopt the

*viewpoint that service delivery is accomplished through .

cooperation of a trio: the mainframe, the terminal, and the
operating system. We call this complement the operating-S
environment of the service, and therefore revise the NSW
statement further: to provide a unified kit of services
distributed over heterogeneous operating environments.
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The introduction to the NSW report then concludes: "The
purpose of NSW is to make (a unified tool kcit -- distributed over
many hosts] a practical reality. The NSW user should not have to
know about OS/360, TOPS2O, and MULTICS with their dirfering rile
systems, login procedures, system commands, etc.; knowledge of
how to use the individual tools which are needed for the job
should suffice. He should not have to worry about reformatting
and moving files from a 360 to a TOPS2O; file transmission should

* be completely transparent. The user should not have to worry
about obtaining accounts on many different machines, but instead
should have a single NSW account."-]

Transparency is indeed a crucial consideration. Suppose one A
.wishes to run a tool on MULTICS over a file of information. In
the context of heterogeneous network operating systems, the input

* file may be stored on a variety of hosts. The network operating
system will be transparent if and only if the identity of the
file's storage host is invisible to the human observer (without
examining internal system information, of course). In other
words, transparency has not been achieved if the user must be

* concerned about whether a file is stored

- local to the tool, or remotely

- on some machine running a particular operating system

- on a specific host

Transparency certainly demands absence of distortion. If we
were to attach the same printer to every machine in a network
exhibiting the desired property and then list some text file
everywhere, the resulting stacks of paper should be
indistinguishable. There are other attributes which demand
equivalence, however - most notably the comparative dynamics of
tool operation. In our NSW prototype, the fetching of remote
files was visibly slow; even though the fidelity of file
translation was relatively good, we did not in fact achieve
transparency.

Another barrier to transparency is raised by the multiplicity

.7
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of failure modes that may occur in a distributed environment. If
the file to be input to a tool resides on hosts which are down,

* no obvious method is available to the tool to report such a fact -

to the user of the tool. (A good analog is the case in which the
desired file is located on a dismountable disk which is not
available when the file is requested, but the problem remains:
transparency is lost because error conditions are not
equivalent.)

We can, however, hope to achieve an acceptable equivalence:
*normal operations of service behavior do not reveal the

intermediary network, and the extended faults that do occur are
reported in the same fashion as similar system errors, etc.

In conclusion, the problem NSW originally addressed is indeed
current, and the need for a system of this class has increased
over the decade during which NSW was conceived and developed as a
prototypical evolutionary step towards a distributed
heterogeneous operating system.

2.2 Characteristics of a Distributed System Supporting Maximal
Access to Productsi

Bonnie Shipman's "Survey of Distributed Systems" listed a
number of distinguishing characteristics. As we look towards the

*next generation system, we next wish to consider each one of
those characteristics -- their criteria together with our -

recommendations and supporting arguments -- as influenced by our
*experience with the NSW prototype. We call this system MAP:

Maximal Access to Products.

1. General Purpose Vs. Special Purpose

* MAP inherits generality from the products it offers;
thus we would expect general purpose support to be
provided. It is important to note that nodes in a MAP
network need not offer identical services; rather each
node need only implement sufficient functionality to
support locally-offered products.

2. Guest Level Vs. Base Level Implementation
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MAP will offer a large number of products. Each such S
offering represents a substantial investment on the
part of its builders. Products which can run in the
AP system without modification accrue a number of
savings; their component parts -- software,
documentation, training, customer support, etc. -- can
be used without modification. Sophisticated products 0
are themselves sophisticated users of their own
operating systems. Since replacing the product's
operating system appears to be prohibitively
expensive, guest level implementation is clearly
indicated.

3. Visibility of Distribution

Distribution in MAP will be observable by its users.
Earlier, we discussed transparency as a goal and noted
that, in all likelihood, products running in the MAP
environment will be perceptibly slower than their .
centralized counterparts. In addition, certain
components of a distributed system can fail
independently of others; consequently, users have a
richer failure model with which to contend. For
example, a user running an interactive tool on a --

remote host who wants to process a file. on yet another . 0
host will have to be cognizant of the effects of any
combination of the three hosts going down. The
advantages of a distributed system will motivate the
sophisticated user to deal with these problems. User
comprehension may well go hand-in-hand with high-level -
fault isolation; a decision to report system errors in . .
this manner would indeed make distribution in the
system clearly visible.

Should host identity be revealed? It is attractive to
hide this information from the users so that tool
availability could be reassigned among compatible
hosts by network administrators. During our
experience with NSW, however, hosts were never
interchangable; even if they ran the same operating
system, each host's tools inevitably acquired a
distinct personality. Thus, products in MAP will be
identified as to their host of residence. -

4. Network Services Provided
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This issue depends upon the position taken on
visibility. If distribution is to be visible to the 0
MAP user (and we believe it must be), then user-level - .

commands reflecting the status of the distributed .

system will naturally appear. In NSW we took the
position that our users' access module (the Front End)
would supply non-NSW network services -- two important :.-
areas of functionality included access to external • .
file systems ("import" and "export") and establishment
of terminal connections (ARPAnet TELNET).

5. Reliability

A distributed system may be highly reliable, but only . S

if its control functions are dependable. A system
like MAP offers a multiplicity of resources: access
points, file servers, and computing resources.
Simultaneous failure of such resources is unlikely.
Since operation of the entire computing network
depends upon the availability of system control . 9
functions, our NSW prototype required availability of
the Works Manager's host. Proposals to distribute the
Works Manager were never pursued, due largely to our
estimation that system response would suffer
dramatically if the control functions (and databasel)
were distributed. The development of a system S
architecture capable of simultaneously achieving
desired performance and reliability is a necessary
prolog to the design of MAP.

6. Protection

In line with the issue of system generality, MAP
inherits protection requirements from the products it
offers. But generally speaking, the products are not
directly concerned with details of host system
protection; thus MAP implementers need only address
the issue of protection and sharing among network and S
local users. The unusual product which does include

• -manipulation of local protection mechanisms could be
difficult to offer in the MAP environment. For -.
example, should MAP choose to implement user-based
permissions, products which manipulate object-based
permissions could not then be supported with any 9
obvious strategy. Nevertheless, even though NSW
employed user-based object permissions, it also
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offered an acceptable variety of tools on IILTICS,
which exerts control on an object basis. This is due
to the fact that most tools do not concern themselves
with the details of protection; rather these details
are delegated to an -- any -- operating system. On
the other hand, a sophisticated file managing tool
(e.g. a code librarian) might prove difficult to
offer.

Changes in the protection status of resources and
users, generally performed by system administrators
must, in a distributed system, be handled in a manner
addressing the needs of distributed administration
(see 11.).

7. Resource Selection

PLTwo kinds of resources whose selection is Of interest
are the actual host for running a desired product, and S
the actual copy of a file to be used when the file
system is distributed across heterogeneous hosts. if
the MAP. network offers installations of a given
product on a number of hosts, then a specific host
must be chosen in order to run that product. The
choice can be narrowed -- if not actually made -- by
administrative restriction. Algorithmic
considerations for making the actual choice might
start with preference towards the host serving as the
user's terminal handler, since interaction should be.
optimal when the terminal is local to the product
being run. Failing this, it is highly desirable to -.

choose a host on which the product's input files are
stored, obviating the need for file transmission and
possible translation. Indeed, when the size of the

* input files is so great that it precludes relocation
-- for example, a large data base -- the issue is

decided . Finally, if separate hosts must be used for
access, execution, and file storage, then file content
translation need not be performed if executing and
file storage hosts can be found whose operating
systems are compatible. (The chosen host must of

L course be up!)

Our initial approach in NSW was to treat remote
installations of the same product as equivalent. A
user could type 'Use TECO', but was not allowed to
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influence the choice of which TECO was actually 0

selected, nor was he informed of the host's identity.
While this system is ideal for network administration,
it proved confusing to users. As we noted during our
discussion on visibility, multiple tool instances were
in fact not equivalent due to the variety of
installation decisions at participating sites. Note 0
that the NSW command language statement which named
the tool did not specify the files on which the user
intended the tool to operate, so that NSW could not
exploit the desirability of co-locating the tool along
with its files.

8. Resource Management

NSW used a central resource catalog containing names
of users, tools, and files, along with user-based
permissions for tools and files. In fact, NSW was - . -

vulnerable to failures at the Works Manager site
(where that data was stored). Performance often
suffered because of the interhost communication
required for each access check or login. An
exploratory form of distributed control was
implemented: the TOPS-20 implementation of the
Foreman (tool execution supervisor) maintained locally -
a private database of files which had been read and
created during the tool execution session. If the
central site failed during the session, or if the tool
session aborted prematurely, the database sufficed to . -

recover the files which were created during the
aborted session. In fact, the TOPS-20 Foreman was far
less dependent than other Foreman implementations upon
the Works Manager; its performance was superior since
it had less reason to contact remote resource
managers. It was also the most complex area of the
system to build and operate. When the Works Manager's
records of tool sessions disagreed with the Foreman's
records, system behavior became erratic. Intervention
by system operators was generally required to
re-synchronize the two databases. Certainly, improved
techniques for system design and testing must be
developed before ambitious functionality of this type
can appear in a network product.

9. Extensibility
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A network like MAP is reSponsive to needs for - 2
extension along several axes. Since MAP will offer an 0
abundance of products, system features cai. - and
should - facilitate additions in this area. New - --

products which are offered in one of the operating
environments which MAP already supports can be

incorporated with little or no difficulty. In order
to support the desire to add products on a continuing 0

basis, however, MAP should be extended to new
operating environments in response to demands for
additional products. The original NSW prototype

offered tools on TENEX, OS/360 MVT, and MULTICS. As
the project progressed, TOPS-20 (as a variant of
TENEX) and MVS (as a variant of OS/360 MVT) were
added, .and a UNIVAC EXEC8 implementation was designed.

While product addition is an example of pure
extension, evolution of the system represents a
related need. Thus, MAP's architects should plan for
the replacement of critical elements with improved
variants of the originals, thereby incorporating

experience gained with earlier releases. An important*
arena in network evolution is the user interface. The

NSW Front End (FE) experienced more architectural
variation than any other system component. As
originally conceived by SRI, the FE included a
repository for tool functionality concerned with user
interaction, so that interactive tools would become
distributed tools as well. A TOPS-20 FE was developed
by COMPASS chiefly in support of NSW evolution; it had
to be satisfactory to use and capable of supporting

all aspects of NSW development, but it was never
intended to provide full support to users. BBN
designed and built a complete FE which could be run as
a UNIX tool. The UNIX FE contained support for
running programs as sub-processes, for listing files,
for defining keyboard macros, for connecting to other
network systems, etc. Even though each of the three
FE's presented a distinct user interface, they used a
common interface to remaining system components; no
dependence on the FE type appeared outside the FE.

10. Administration

The choice between two distinctly different forms of

network administration exerts significant technical
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influence on the system itself. At one extreme one
finds interdependence: nodes as embodied in the Apollo
Domain architecture. In this freely distributed rile
system any user's files can physically reside on any
other user's disk. Thus, while Domain users may
choose to dedicate nodes to selected users (placing a
workstation in a user's office, for example), only the
display system is subject to exclusivity. The Domain
operating system may choose to allocate files on any
given disk; it may request cycles on storage nodes'
CPUs, etc. In fact, no user may power down a node:
the on/off button has no effect on hardware required
for remote file services. .0

Federation is the usual administrative relationship
among the nodes of a network. Even though Domain is
composed of distributed computing elements, the
administration of these elements is centralized; when --

administration is also distributed, a different system .

model is required. It cannot be assumed that remote
resources will be available whenever local users need
service, because remote hosts my have disabled
network service on the basis of local priorities. Our

* NSW nodes resided on *university machines (on which-
end-of-semester deadlines reduce system resources);
and on government-operated machines (which are
sometimes commandeered for priority demonstrations of
other projects). Such perturbations fortunately yield
to system adaptation mechanisms. They can therefore
be viewed as another source of unreliability - a node
can fail for administrative as well as for technical0
reasons. Since MAP plans to add computing resources
over time, its architects should assume the
conservative position of the federation model.

Another aspect of system administration is
bestablishing and maintaining user accounts and their

attendant permissions. Most organizational methods
for performing these tasks rely on the rich
communication channels which o'ne finds in
interpersonal cooperation: face-to-face discussions,
telephone calls, etc. When the user community is
widely distributed, communication between system users S
and administrators becomes limited, and cooperation is
harder to achieve. Indeed, one may have to rely on
electronic mail to accomplish tasks rather than as a
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mere supplement. NSW developers had a great deal of
trouble with these comunication limits. (Complex but
typical examples might be helpful. An electronic
message is sent to persons at different locations. If
the manner in which the sites cooperate in reacting to
the message is unclear, there is no means within the
message of establishing cooperation. If someone 0
received a message describing a system bug, was it
just for information, or was the recipient thereby
requested to fix it?) In response to such
difficulties, a structured "mail" system was developed
to coordinate the efforts of the distributed project -.

staff. Such a tool is clearly needed in MAP to
facilitate communication between users and
administrators.

2.3 Applicationa of a Distributed System Supporting Maximal
Access to Products S .

In this section we turn our attention towards the utility of
MAP, a system providing a unified kit of software products
distributed over heterogeneous operating environments. MAP
clearly has unusual characteristics - most notably, the -

integration of multiple computer systems, even though they have
disparate architecture and are geographically distributed.

How can MAP's distinctive features best be exploited? Such
considerations are especially important for systems whose
functionality reaches into the higher layers -- application and
presentation -- of the ISO/OSI Reference Model. This certainly
applies to MAP, which must effectively translate file and
terminal characteristics. Based on our experience with NSW, the
following examples illustrate the potential benefits which a
system like MAP can realize.

1. Software Product Evaluation

It will be easy to evaluate software products in the
MAP environment. At first, one might think that the
source of leverage in this area lies in the
multiplicity of operating environments found in the
mature MAP. As this number increases, so does the
probability that new products can be installed in MAP
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without (the relatively expensive task of) first 0

installing its operating environment. MAP's real
advantage lies elsewhere, however.

Products do not operate in isolation. Borrowing from
John Donne, "No product is an island". Most such
packages exploit the rich file systems in which they

operate; furthermore, packages are often used in
groups to form problem solutions cooperatively. A

spelling checker provides a good example: user-written
document files are scanned for spelling erros using "

standard and custom dictionaries. In order to
evaluate the spelling checker, a user must create
document files and custom dictionary files and
finally, invoke the tool. The result of the check
must in turn be processed: printed, interactively
browsed, combined with other documents, etc.

It can be argued, therefore, that more effort must -

often be invested in acquiring a working knowledge of

operating environments than in using the tool itself.
In order to create and manipulate files, naming rules
must be learned. To compose text, an appropriate
terminal must be found and editors must be learned.

To invoke the candidate product, execution rules must
be learned along with attendant exception handling and
reporting conventions. And finally, in order to share
results with others, protection rules must be learned.

MAP's real advantage lies in its standard operating - -.

environment. In order to evaluate the same spelling -

checker within MAP, no new rules need be confronted;
the file naming, execution, exception handling, and
protection mechanisms are standard. More importantly,

familiar editing and file manipulation tools can be
used. It is not that editors are hard to learn; the
problem lies rather in the difficulty (impossibility?)
of switching freely among sophisticated editors with

which one has acquired proficiency. Evaluation in MAP
can thus begin with a concentrated appraisal of the
product under evaluation, or in this example, "How do
I create my custom dictionary?".

2. Evolution toward Distributed Applications
. . - N."

One interesting possibility for the MAP network is the
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distributed application. While the previous
discussion shows that new products can be easily
investigated, HAP minimizes the learning requirements
for such products without actually producing any new
functionality. Suppose, however, that we want to
share the results of an attractive product with others

-other persons arnd other products! MAP's power of
integration is most clearly demonstrated when the
participants in its scenario are distributed.

Its capacity for accessing an entire network via a
single-step authentication is highly useful.
Elementary file-sharing operations are far easier in
the MAP network than in one consisting of a loose
federation of hosts. As we stated in the Rationale of
the User Model,

."You need an account on each host...

-The operating system on each host is different,
so you must learn different login procedures,
command languages, interrupt characters, file
naming conventions, etc..."

The NSW Technology Demonstration provides some good
examples of this. Three Air Force Logistics Centers
participated: Warner-Robins (GA), Oklahoma City (OK),

and McClellan (CA). Each site has a PDP-11/UNIX.
Front-end Machine. Tools were offered on TOPS-20's in
Rome NY and Los Angeles, on an oM/MS system in Los " :.
Angeles, and on a Honeywell/MouLTICS system in Rome KY.
All machines are connected via the ARPAnet, but each
is separately administered. Using conventional
ARPAnet protocols, each machine would have to be
confronted anew in order to access a remote tool or

file. Our users found NSW's central access to be much
more convenient. Central authentication, then, is one
demonstrated advantage of a network like MAP.

Realistic applications of tools (and products) involve
a cascade of processing. To accommodate this, UNIX
provides the ultimate environment: Standard Output
from one tool can be internally "piped" to Standard
Input of others, creating a tool complex appropriate
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for a large range of problems. Another new
functionality which a network like MAP makes possible,
then, is the distributed complex of products.

The NSW Technology Demonstration included several
scenarios for system usage. The most ambitious of
these was the Emulation scenario, which exemplifies
distributed applications of this type. The Nanodata
QM-1 is a novel computing device which can assume the
CPU architecture of a very wide range of machines. It
accomplishes this by loading appropriate vertical and
horizontal microcode -- DECsystem-10, IBM/360, and S
microcomputers are examples of machines which can be
simulated. The QM-1 is usually attached to a general
purpose machine in order to provide the customary
array of support peripherals (and networkingl).

Quite a lot of software is required in order to use . S
the QM-1. For example, suppose we want to test a
piece of avionics software as it might run on an Intel
8086. The first stage configures the QM-1 microcode
so that the system will behave like an Intel 8086 CPU:
its registers, addressing, timing, etc. We are then
in a position to load the QM-1's "memory" with the ._.
binary data -- the results of compiling, assembling,
and linking the avionics software -- which would be
loaded into the 8086's memory. The QM-1 is now in a
position to "play" Intel 8086 on the avionics code.
The CPU can be started at selected locations,
breakpoints can be inserted, etc.

The NSW Technology Demonstration provided a
distributed complex of tools in answer to these many
needs. A QM-1 was connected to RADC's TOPS-20. The
SMITE compiler, which generates the QM-1 microcode
from a high-level description of machine architecture, 0
was installed on RADC's MULTICS. Cross-compilers and
cross-assemblers were installed on these machines and
on UCLA's MVS system. One of the participants had a
QM-1 and could transfer remotely developed . .

applications to the local machine. The other sites
wanted to evaluate the QM-1, but did not yet have - 0
their own machines.

Distributed applications represent a new frontier of " .

product development. Since no single system
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architecture can satisfy user needs, groups of0
products which can fill the computing needs of today

~and tomorrow must be free to exploit the architectural
diversity found in the heterogeneous network.

3. Configuration management - of distributed objects

Inconsistencies which come to light during product
installation or upgrade imply the need for
computerized configuration management. Consider some
examples: the distribution kit for a product arrives
with the user manual for the previous version; an
upgrade kit includes only some of the product pieces .
actually affected by a change; testing a new product
release did not consider regression in unchanged
pieces. Such malfunctions of product management are
not diseases, but rather are symptoms of an imbalance.
What is the problem, and how can one treat it?

Each of these failures is a consequence of
incompatibility among the product's component pieces.
The goal of configuration management is to preclude
such errors. Existing unautomated techniques suffer
from an incomplete representation of the true-
composition of the product. A complete configuration .

* includes documentation, test cases, desired and actual
results of tests, training materials, etc. Only when

* the elements of this collection achieve coherence
should the product be considered for distribution
(i.e. for installation or upgrade).

Automating configuration management naturally begins
by considering a database rich enough to represent
product composition, along with comprehensive
procedures to support product management

-installation and upgrade included. Such a database
would have to represent the composition of
sub-assemblies of the product. Procedures for
managing the product might include composition
reports, change impact analysis and notification,

* release generation, and trouble reporting.

*.Processing of this sort has been done for a long time:
Bill of Materials applications were among the early

*,commercial applications of computing. The
configuration management problem could be viewed as a



variant of that problem. Its raw materials are the 0
software, documentation of all kinds, test cases with
actual results, etc.; its outputs include installation
kits, upgrade kits, and reports.

In the "Rationale of the User Model", we discussed the
continuing specialization of computer system •
architecture. This trend suggests that products of
the future will be composed of pieces developed in
different environments. In an advanced radar system,
the hardware drawings could come from a CAD/CAM
system, the embedded software from a programming -- -

environment, the documentation from a word-processing B
system, system simulation results from an array
processor, and actual test results from data
acquisition and analysis facilities at a testing
laboratory. And the radar is only one sub-system of a
ship, aircraft, etc. The management of an immense
amount of information is difficult to visualize until
we recall that current practice is to warehouse
volumes of paper.

The global namespace of the MAP network allows
construction and manipulation of a database which
could accommodate a product of the complexity of the
radar system. Furthermore, procedures to manipulate
the named pieces could operate there. Thus, a network
like MAP must form an implementation substrate for
automating the configuration management of products
whose pieces are taken from a heterogeneous
enviroment.

4. Distribution - to dispersed consumers

The MAP network supports the production of documents
and programs, and should in turn support their
distribution to end users and to other producers. In .
a network environment, the scope of distribution can
be very large. The interaction between remote
producers and consumers requires special treatment, in
the same spirit as does the area of distributed system
administration [see characteristic number 9, above].
We assume here that the items being distributed may be
revised from time to time.

Consider the production of something as simple as a.
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single document being written by a single author. 0
During early stages of preparation, it is a private
file accessed by the author only. At some point, the
author may distribute working copies to others for
comment. While the document at this point is no
longer private, neither is it fully public
(bibliographic references to such documents often call
them "private communications"). Once the document is
scheduled for release or ready to be used by others, a - . -

number of actions should take place to support both
producer and consumer. Archival is generally
performed on released files: consumers often demand
it, and producers usually want their released items
archived too. A release announcement might also be
sent to an initial intended readership.

Once the document has been released, it can be
accessed by many consumers; all one needs is the name
of the file and read access to it. We now enter a
period of increased perusal of the document, with
(usually) less interaction between producer and
consumer. A number of useful facilities could be
provided to streamline access and to prepare for
subsequent releases. The system could provide mail
service if the producer ts mail address is available, O
and (possibly) a forwarding service if not; a
distribution log could be kept to show who received
copies, and when.

Up to this point, nothing very "exciting" has
happened. We have described normal
preparation/distribution procedures. Now we get to
the meat of the problem: authors may want to modify
their documents. It is the consumer who is now faced
uith a number of problems:

- Can I find out when a change is released?

- Can I get update pages or a whole new document?

- How can I be sure I have the latest version?

- Can I recover any released version?
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First, we must assign names to successive revisions.
This is, in fact, one of the most appealing features
of version numbers: succeeding revisions may be
identical in name, but distinct in version number.

Release of a change is signalled (to the system) when
the producer releases a file whose previous version
has already been released. If a distribution log were
collected, change announcements could be sent to
consumers (or at least to those who requested update
notification when they obtained their copy). The
change notice could include a summiary of the
modifications, as reported by the producer when he
released the new version. Note also that update pages
(the subject of the second question above) can easily
be produced by processors like VMS DIFFER, TOPS-20 1
SRCCOM, etc. Finally, every version is separately
archived, so that any particular revision is
retrievable at will.

Sometimes one wishes the "latest" version of a
document, and at other times a particular version is
required. For example, if I am an author and need a
reference for "current" usage, I might go to the
bookstore and ask for the "latest" Webster's
dictionary. In the book's bibliography, I would note
that in fact the 1978 Webster's dictionary was used.
It is most important that the specific revision be
noted so that in the future (say the year 2200) the
book could be read in the context of the proper

dictionary. In NSW terms, I merely want the latest
copy of WEBSTER.DICTIONARY when I "go to the . .

bookstore", but I record the edition used (as
WEBSTER.DICTIONARY;1978, for example) in the book's
bibliography. If I do not wish to be notified of
changes, I can always see which version is offered in
response to WEBSTER.DICTIONARY. As long as it's 1978,
I'm all right; if it changes to 1979, I can take a new
copy if I wish.

A network like MAP provides integrated access across a
broad geographic space. It is therefore the ideal
medium in which to implement a tool which can support
the distribution and revision of documents, programs,
etc., and do so without any special actions on the
part of the producers.
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3. Advice on Building Heterogeneous Distributed Operating Systems
- by Mark Marcus

3.1 Introduction

3.1.1 Motivation

This article offers some advice to the would-be designer and
builder of a heterogeneous distributed operating system
(hereafter referred to as H-DOS). An H-DOS runs on a network of
dissimiliar computer systems. The H-DOS user has an easy and
integrated access vehicle to the resources of each computer
system attached to the H-DOS. A computer system is defined in
this article as being composed of the hardware, the software, and
the native-operating-system.

A

A large amount of the information presented here has been
obtained from the National Software Works Project [NSW 83]
(hereafter referred to as NSW). NSW was an ambitious prototype
for an H-DOS which ran on the ARPANET from 1976 through 1983. In
1983, NSW had connected the following ARPANET computer systems:
an IBM 360/370, Digital's TOPS-20, Honeywell's MULTICS, and a

" UNIX running on a PDP-11/70.

3.1.2 The Present Situation

There exist many different kinds of computer hardware
-- mini- and micro-computers, mainframes, number crunchers, high
resolution graphics workstations, personal computers, etc.
-- each one fulfilling a specific real-world need. For example,
a mainframe may be appropriate for a system that keeps track of
all foreign military vessels in the Atlantic Ocean, because of
the large amount of data involved in such a job; however, a
micro-computer may be more appropriate for an on-board system
that navigates a missile. And just as there is a need for
different types of hardware, so is there a need for different
types of operating systems. Some operating systems may be made ..
highly efficient by not providing many operating system calls;
while other operating systems may be less efficient but provide
excellent support for software development. Some operating
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systems may be best suited for the master file update algorithm 0
(e.g. financial packages) while others may be more suitable for
process control (e.g. robots for manufacturing).

One drawback in having all these different computer systems .
around is that they require that a user learn the idiosyncrasies "
of each environment. At present, different computers have
different operating systems, which in turn have a certain class
of software that runs best on each of them, with the unhappy
result that the user cannot sit down at a single terminal and 4

orchestrate the use of different software in an integrated way.

For instance, a mainframe may be more suited for running an
Ada compiler with the object code intended to be downloaded to a
mini or micro for execution or debugging. Or a superior editor
may be available on one computer, a superior compiler on another.
The first step towards accommodating such factors as the above 6
has already been completed as demonstrated by the existence of
computer networks such as Arpanet, Tymnet, Csnet, and Ethernet.

Network software is designed in several layers; each layer
providing a service to the layer below it. A popular layering .
model is the ISO/OSI reference model for network architecture.
The first layer simply provides an electrical connection. The
next layer makes sure that bits get from point A to point B in a
reliable fashion. In a number of network architectures, the
network layers are advanced enough to provide two services which
we will call FTP and Telnet. FTP allows for file transfer among . ..
computers of the network, and Telnet allows for a user to attach
and log an interactive terminal into any computer on the network
as though he were a local user. These services have some
limitations in that file structure, and assumed terminal
characteristics differ from one system to another. Many problems

* ~are solved by establishing a connection between tools (e.g. -

compilers, editors, etc.) and system resources via virtual
terminal and file structuring. Before crossing computer
boundaries, the actual structure is mapped onto a virtual
structure. However, services like FTP and Telnet do not provide
easily shared resources. For one thing, file transfer is tedious
and the different idiosyncrasies of each system must still be
mastered. There is no provision for a uniform file system
accessible across all computers in a network as if each file were
local to the computer.
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uniform access to a number of widely differing computers

* -- allowing a person to run programs on several different

computers, and to have files produced by one tool be used by

another to ona different system with the file transfers being

transparent.-

Many engineering lessons were learned in the NSW project.

Below is a list of some of the items to think about when

designing and building an H-DOS:

"n Failure Modes and Uniform Error Handling

-Virtual Firm Connections

M Procedure Call Protocol w

D Distributed Data Bases

-H-DOS/Tool Interface

Accounting and Logging

- Demand Paging

- Comand Scripts

- Response Time

- File Storage

- Immersion (i.e., developers in system)

The ideas contained under these topic headings often show up

or blur across topic boundaries. Let the implementor beware.

3.2 Failure Modes and Uniform Eror Handling

Say there are 6 computers on a network. Then the number of

states this network can be in with each of its computers in
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6.
either the up or down mode is 2 (i.e. 64). In general, this

K
number is 2 , where K is the number of computers on the
network. In other words, if you would have 16 computers on the
network, you would have 65,536 possible states of the network.
Moreover, there may be many failure modes -e.g. DOWN, TOO-SLOW,
MALICIOUS, BLACKHOLE, etc. So, the number of states the network

K
can be in is really (M+1) , where M is the number of failure
modes and K is the number of computers in the network. This is

K
much larger than the 2 above. Software running on this network "

would have to take these failure modes into account; if not, big
problems could arise.

What is the symptom of software that doesn't properly take
into account failure modes? Most likely, such software would
either hang, crash, or deadlock when it first encountered a
failure.

Take the following scenario: a computer is about to be pulled
out of the network -- no one will be able to communicate with it.
Before this happens, an unsuspecting user of the network (i.e. a
computer process or a human being) makes a request of the system
that requires communication with this soon-to-be-incommunicado
computer. Suppose this request could take between one and five
minutes to complete. What happens when this computer goes "down
for the count" (i.e. is pulled out of the network) after this
request has been issued. One solution would be to place a
5-minute timeout in the caller computer. The caller computer
decides to wait the maximum amount of time for a transaction
before taking any action. This solution, while it will
eventually detect the problem, does so in a worst-case fashion
(consider a request that has a maximum transaction time of 60 - . - -

minutes, but most of the time takes 20 seconds).

Either the user is standing next to the "fallen" computer and
sees that it is down and wonders why his service-initiating
computer can't detect that fact; or te computer is out of sight
and the user looks helplessly at his terminal wondering what is
going on (especially when the user learns that he could be
waiting on a failed component or may be waiting for a
legitimately long transaction time).
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See the "Virtual Firm Connection" section for a quick method S
for detecting when computers become inaccessible over the
network. The reason for inaccessibility could range from the
computer crashing to the network communication lines being
broken.

Another symptom of improperly handling failure modes is
inconsistent and improper messages being sent to the user's
terminal. In NSW, for example, if a user had requested the use
of an editor on a crashed computer, he would sometimes be shown a
sequence of messages indicating the successful start of the -

editor followed by a timeout message indicating the S
unavailablility of the editor; instead, he should initially be
notitifed that the resource is unavailable. If the specific
reason for failure is known, and this information is useful to
the user, it should also be mentioned on the user's terminal.

Failure modes are only a subset of a larger concern about
error handling in general. It is important that a scheme to
handle failure modes and errors is designed into the H-DOS from
the start.

Before delving into error handling, I would like to introduce
the concept of rapid prototyping. A rapidly prototyped version
of a product is usually considered to be a version of the product
that is built quickly, minus the bells and whistles, with the
rough edges still in place.

Rapid prototyping is just as applicable to the building and
design of an H-DOS as to any other product. In a sense, handling
failure modes and rapid prototyping go hand in hand. When . .
designing any system, if a part of it is working quickly,
potential customers can then see how the design fits their needs...
One way of rapid protoyping is not to handle all of the failure
and error modes explicitly. This method is akin to Ada's
exception handling facility. The basic idea is that, during the
first draft of the code, all errors are just "passed up" all the
way to the user. If a routine encounters an error in this first
version of the code, it simply returns an appropriate error S
message to its calling procedure. That procedure in turn returns
the error message, along with a note that the error has passed
through this procedure. In the end one will have a trace of

59

. . . . . .°

.=.- . •o " o - .. -. o .°- .- .° • • . o- ° . .'. .° . ., - . . . ° - ° °. - . . .. . . . . . ...-... .". .... .'
• ."/ / :" ".' "°" .-" ".-'''..''-.-' .i-';.'' :

°
" "'- "'" - "" .

' °
. . - . . ". " , ,- -. "." . . " .. . ', .", ," ° ."-" "



procedures ending with the one that caused the problem. How much
of this calling chain is passed to the user is implementation -
dependent.

This scheme allows for quick production of code, because the
normally large percentage of code treating errors does not have
to be produced right away. However, the structure is there to be S
filled in with the proper error handling code when a more
finished product is developed.

Here is an example. At first there is no error handling
code. Now, suppose you have a disk error. In this initial, 0
unfilled version of code, the user is ultimately told that the
transaction requesting a disk read failed. How this information
is presented to the user is an arbitrary design choice. Later,
as code is filled in to handle specific errors, a different
scenerio might result. For instance, the same request was made
with the same disk error; however, now an error handling routine .

decides to get a duplicate copy of the file from some other
computer; the user may not even be notified. The error will be
recorded in a log to be read by system operators.

In filling in these error handlers, it should be noted that S
it is important to assign responsibility for error handling to
code authorized to make the decision. And, as in business
management, the code performing decision-making should be at the
lowest level possible. For instance, a checksum problem should
be handled by the link level protocol, not by an application
program. And conversely, the decision to search for another copy
of an inaccessable file should not be handled oy the link
protocol program.

It is also appropriate for higher levels to be informed of
"failure trends" by lower levels, e.g., to emit "Please wait" 5

* messages.

3.3 Virtual Firm Conetio:s
9

Many computer networks are packet-switching networks. A

60060 - "" '

. 0.""""%

. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
' .'% .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . .. % -. * -

° .

.' ,.% .% o' " '".'.'"- .. j". ".. ", " "" . "" . °" ' ''



v7 7

common- way for two processes on different computers on a
packet-switching network to talk to each other is by establishing
a virtual connection. When a process on computer A wants to talk
to a process on computer B, it asks its local network software
for a virtual connection. When this virtual connection is
established, the process on computer A can simply send the data
down the software connection without having to specify the host0
and process name everytime. From a software point of view, there
is a connection between processes on different computers when, in
fact, there is no dedicated physical connection on packet-

* switching networks.

40
The detection of a break in virtual connections in most

* protocols only takes place when there is an attempt to send a
message over the connection (e.g. as in the TCP protocol). This
ultimately translates into a sluggish response time of the H-DOS
to the user.

Suppose a process control system is built on top of an H-DOS.
And suppose a user of the network decides to fill a tank with
propane only if there exits a connection to the computer
controlling the fire-extinguishing hardware. If a conventional

* virtual connection were established with the fire-extinguishing
hardware, there would be no detection of a break in communication
with the fire extinguisher until there was an attempt at using

*the connection. Finding out you can't control the fire
* extinguisher when you need it could be fatal.

In general, when the ability to communicate with another
process is lost, the network will perform more smoothly if it can
respond to the break immediately. Of course this Is not always
the case; but in those cases where it is desired, virtual firm
connections should be used.

A virtual firm connection (a term coined for this article) is
a virtual connection that can detect breaks when they happen. In
packet-switching networks there is only one way to do this, and
that is to periodically test the connection for continuity with
the transmission of dummzy messages.* These dummy messages are
sent by the layer of software below the application layer. The
application software does not get involved with the transmission
of these dusmmy messages. Only when a connection break is .
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I detected is the application software notified. This technique is
* used quite often in critical process control areas.

During the construction of an H-DOS, it is often helpful to
use the virtual firm connection mechanism. Nevertheless, the .-

Idecision to use virtual firm connections over virtual connections
* must be carefully thought out. There is an overhead associated

with the use of virtual firm connections, the cost of sending
periodic dummy messages. This Cost Must be weighed against the
need for quick detetection of communication breaks given by
virtual firm connections. In some cases it might be found that
the overhead may not be worth it, especially if the reliability
of the connections is statistically very high.

3.4 Procedure Call Protocol

A typical method of getting two processes on different
computers to talk to each other is by sending a block of data
(i.e., datagrams) between them. The receiving process must parse
the datagram. and hope the bits really represent the desired data
types.

-Another approach, separately written about by James
* White [White 76] for the Xerox System Integration Standard and

Stephen Schuman [Schuman 81] for the Ada environment, is to
communicate with foreign processes by a procedure call, just as

- you would for a local procedure call. This method provides for
* parameter checking and all the other benefits associated with the

procedure calling mechanism. Of course, from a procedure call
* one must allow for error returns that indicate a communication

-1 failure. A pleasing quality of this is that the error can be
handled or not handled by the same method outlined in the
"Failure Modes/Uniform Error Handling" section.

3.5 Distributed Data Bases

It is well worth spending time on constructing or obtaining a
* good distributed database system. Issues involving construction
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of distributed database systems can be found in the literature 0
(for instance, [Ullman 82)). In the H-DOS environment, a
distributed database system can be used to full advantage in
several areas:

- as part of a file system 0

- for storage of H-DOS's users profiles

- for logging and accounting data storage

- as a tool for application programs . .

Many of the kinds of data normally found in a conventional
operating system (e.g. files, user profiles, etc.) are scattered
about the numerous computer systems of an H-DOS. A distributed
data base system glues this data together and to a large extent S
removes concerns over computer crashes and communication
failures. In other words, distributing data causes problems, so
why not .create one piece of software that deals with those issues
in a uniform way and be done ith it. In NSW this was not the
case; each subsystem had its own way of dealing with the
integrity of its distributed data, with some components not doing 0
as good a job as others.

3.6 H-DOS/Tool Interface

There are two ways to go about building an H-DOS:

1. Have a guest level implementation which implements an
H-DOS on top of the already existing operating systems - 0
(i.e. MVS, TOPS20, Unix, etc.)

2. Have H-DOS supplant the local OS.

Having a family of operating systems specifically constructed S

for H-DOS has the nice property of being more efficient than (1)
the so-called guest level implementation. The advantage of (1)
is that it is less costly to build an H-DOS out of already
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0

existing operating systems, and it allows a user familiar with a
local operating system to use the H-DOS only as an access route
to services not found on the local host. The user can still use
familiar tools for problems that require services provided by the
local system, while using H-DOS for services provided
non-locally. This section will only discuss (1), the guest level
implementation scheme.

Ideally, a tool such as an editor should be able to be
accessed from both the local operating system environment (e.g.
UNIX) and the H-DOS environment (e.g. NSW) with equal ease. If
H-DOS and the tools are developed with this in mind, this is no
great technical feat to accomplish. However, to retrofit
existing tools into H-DOS without modifying the tools I/O is a
difficult problem.

Two techniques have been tried: a backend (BE) and frontend

(FE) approach. Both have had only moderate success. The problem
in both the FE and BE techniques centers around redirecting a
tool's request for an operating system service from a local
operating system call to an H-DOS call.

In the FE approach, the H-DOS could monitor the stream of
characters entering and leaving the tool. When H-DOS "thinks" a

filename was being requested, it could replace it with an H-DOS
file mapped into a local file. In the BE approach, if the local
computer could trap the local operating system calls, all local
system calls handling files could be redirected to the H-DOS (as
is done in NSW). But how should temporary file requests be
detected? And what if the tool itself does file name parsing,
with local filenaming syntax?

0
Both FE and BE approaches require sophisticated techniques to

properly determine how and when the H-DOS should stick its nose
into the tools activity. Also, the mapping of an H-DOS filename
into a local filename space is non-trivial, as the syntax of both
type of filenames can be quite different.

The solution -- if you use existing tools -- is to recode the
I/O to connect to H-DOS. A library of routines could be made up
to make this process less painful. In most instances, tools

*.* .. ...... . .. . ..... . .. ...64



0

request services from their operating system by way of calls with 0
names such as OPEN, CLOSE, READ, WRITE, SEEK, etc. Tools could
be recoded to call H-OPEN, H-CLOSE, H-READ,H-WRITE, H-SEEK
instead. These H-XXXXX calls would detect, possibly at run-time,
that they were running in either tne H-DOS environment or the
local operating system environment, and then they would service
the requests accordingly.

3.7 Acooumting and Logging

During the running of H-DOS, two kinds of information must be S
gathered: (1) usage charges to collect for accounting purposes
and (2) diagnostic data for maintenance and operation of the
H-DOS system. Because H-DOS is distributed, locations where the
information is being gathered are also distributed. Information
gathered during H-DOS runtime can be stored in a distributed
database system, taking advantage of the database's reliability. . 9
This also has the advantage of being able to use the power of the
database's query language. Questions can then be asked such as:
Who was the last user of a tool before H-DOS crashed? Also,
statistical questions could be asked, such as: What percentage of
users use the Ada compiler?

Although gathering information for accounting is not
difficult, finding a reasonable charging scheme is. The problem
stems from the fact that an H-DOS may store or choose data paths
that are optimal to it by its own criteria. Is the user to be
charged for storing multiple copies of a file when H-DOS decides .
to do this for its own purposes? Does one break out the charges
for using the communication lines, the local computer, the
computer whose service is being used, etc.

One lesson learned from NSW is to think about accounting
during the design phase. It is hard to retrofit such a feature
in an H-DOS.

3.8 Deand Paging

In an H-DOS, where text files may be in different forms (i.e. ".''''

65

6 . . . .. . •. °.., . .. . .. °. °... . . . %. .. ........ ...... ..... " ." "-o .



ASCII, EBCDIC, etc.), file transfer between systems usually •
involves changing the structure of the file. As hinted at
before, this is done by using a virtual text file structure. The
original file is mapped into a canonical structure and then
mapped to its destination structure. This method avoids the (N)
multiplied by (N-i) number of translation schemes needed if, for
each pair of computers, H-DOS directly translated a file into the
structure of each destination computer.

This approach, however, led to not making good use of demand
paging in NSW. Demand paging means only load into memory those
pages (i.e. sections of a file) which a tool needs at that
moment. If the tool needs other parts of the file later, it can
request them later. In NSW, when a request to use a non-local
file was made, the translation scheme was invoked on the whole
file. The tool did not get access to any of the file until the
whole file was translated. This slows up the tool unnecessarily.
For instance, an Ada compiler could not start its processing on a
file until the whole file was translated. The Ada compiler
itself may be slow. In fact, if the rate of translating and
transporting the file and the rate of the Ada compiler were equal
(an unlikely event) and the Ada compiler could start compilation
after receiving the first page, the compilation for a long file
will be almost complete by the time the whole file gets
translated and transported.

In short, if the tool is on one computer and the file to be
used with the tool on another -- do not wait for the whole file
to transfer before starting the tool. Demand Page.

3.9 Comand Scripts

S

In an H-DOS environment, command scripts are essential. They
are, as in any operating system, valuable time savers which are
useful in regression testing.

In NSW, one difficulty encountered in the command script •
implementation involved the command script characters getting .
lost when the command script called for changing from one tool to
another. This points a general engineering issue: in a
distributed system, care must be taken to make sure that the data
source "knows" when the data sink is prepared to accept data.
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3.10 Response Time

One complaint about NSW was that at times it was too slow. 0

This occurred because the resources the H-DOS was integrating
were heavily loaded. The varying amount of access time to a user
is disconcerting. The solution to this is either to have a
system with enough capacity to support an H-DOS, or to have a
mechanism that can warn users of the response of certain requests
based on the load of the computers needed to complete the request
on H-DOS.

3.11 File Storage .

In the guest level H-DOS system, where are the files stored?
Are they stored in local user directories and somehow pointed to
by the H-DOS system? Or, is there a separate file system for
H-DOS?

If H-DOS points to files in a user's local directory, the
user has the benefit of being able to create a file with his ...--. '
local operating system and then to immediately access this file
in the H-DOS envirionment. However, there is a drawback in this
method. The H-DOS may want to move the storage of files to .
certain computers based on its own needs (i.e. space needs, file
is frequently used at a particular computer, etc.). A compromise

should be implemented. The H-DOS should have its own file
system, but there should be a command to map an entire local
directory into H-DOS (at which time the local user will no longer

be able to modify the directory contents locally). A reverse 0

process of unmapping should also be provided.

3.12 Immersion

Immersion is having the developers use, as soon as possible,

the system which they are building. This is more of a statement
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of good practice than anything else. If the developers havY to
use a system, it is more likely to become a comfortable system.
NSW did not employ immersion.

3.13 Conclusion 0

As the above list of issues suggest, building an H-DOS is
not a matter of creating new technology but of engineering
existing technology. NSW did, in fact, prove the feasibility of
blending these technologies.

NSW, as a prototype, detailed many of the pieces that need to
be carefully designed in the next generation of H-DOS systems.
These include the topics discussed in this article. Some of the
technologies, such as distributed data base technology, needed to A

build a successful H-DOS have matured since the start of the NSW
project.

Many of the issues stated in this article are dealt with in
other distributed systems. It is the purpose of an H-DOS to - -

solve these problems and let application programs and users fully
utilize distribution without engaging in these issues.

The need to interact with different computer systems is ever
increasing, in both the military and commercial sector. The
concept of an H-DOS will play a significant role in supporting
this much needed interaction among heterogeneous computer
systems.

68

. ... . .

i% ~~~~~~~. . ........ ................. . .... .•.•. . . .• •



4. The NSW Object-Naming Technique - by Kirk Sattley S

4. 1 INTMtDUCTIOM

One of the little-publicized aspects of the National Software
Works (NSW) effort was the development of a naming scheme for
catalogued objects in an environment where the number of named
objects was expected to be very large. As the NSW final report
is being written, it behooves us to put on the public record a
sympathetic description of this technique in the belief that the
reader may one day encounter a situation where these ideas will
be of use.

The striking feature of the system that ultimately evolved is
that it is neither hierarchical nor relational, in the current
senses of those terms when applied to file systems or databases:

- The naming scheme can be used in a hierarchical
fashion, in that the total system namespace can be
divided into regions, which can themselves be
subdivided, and so on; but it is in fact a "flat"
system: it contains no "structural" objects as do .
hierarchical directory systems -- the names are not
"path names".

- The scheme can be used in a relational fashion, in that
sets of objects can be selected according to
"orthogonal" properties of their names (without regard -

to any hierarchical interpretation the names might also
have), although there are no named "relations" or named
"attributes" (in the naming mechanism proper) -- the
names are not rows in fixed-width tables.

- In addition, this scheme can be used as a S
keyword-indexed retrieval system, retrieving objects
that bear particular tags, independently of any
hierarchical or relational place-value the tags might
have.

S
The system presented in this paper is the "closure" of the

resource-catalogue scheme as it was actually running at the end
of the NSW effort. The designing and planning went on
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continually throughout the development of NSW, and the last
released system contained several new features, plus mechanisms
anticipating the next level of enhancement. I shall describe

* here the system we were aiming toward as if it were complete, and
at the end of the paper add a short apologetic section
delineating the described features which were never actually

* released.

The present paper attempts to present the principal features
of the naming scheme in an order which minimizes forward
references. Each section describes an aspect of the system and
discusses its use and its interaction with previously-described
features. The first subjects discussed are the distinctions and
relations between names, catalogue entries and objects of the

* system, the form of those names, and the form of designators for
sets of names -- sets of names being the conceptual centerpiece
of the entire scheme. Then the use of these set-designators for .
describing access permissions is discussed, along with the
facilities this provides for designing a namespace for a group of
users; this discussion then leads into illustrations of the
"relational" usage of the naming scheme, mentioned above. This
provides material for exploring further implications of
overlapping subspaces as defined by permissions, and for
illustrating the keyword-retrieval uses of the naming scheme.

* The use of non-name information in the object catalogue for
additional selectivity in denoting sets of objects is mentioned
(for completeness, as it is distinctly a secondary mechanism).
The last major structural feature of the system is 'then
introduced, one which allows users to define and name arbitrary

* subspaces as name-interpretation contexts, but which leads to a
nice disquisition on the desirability of imposing a restriction

* solely for the purpose of simplifying the user's mental image of
the system. A notation is introduced to further shorten names by
allowing the user to denote his favorite default name-resolution

1 0 context by not mentioning its name. A logically unnecessary but
* useful feature of the system is next described, by which each

user can have his own, private, space of short names -- analogous
to a personal directory in other systems. One further notation
is introduced, which permits the user to signal easily that a
designator he uses is to denote a single object rather than a
set. After a brief exploration of the use of plural designators .
for repeated source/target operations, the paper concludes with
the Promised description of the actual status of the system as
embodied in the last-released version of the National Software .

* Works.

70



70 

The intended reader of this paper is anyone with an interest S
in shared-namespace systems of broad compass, particularly
someone who has encountered the problems and issues involved in
devising naming conventions for a many-person project. Some of
the sections are concluded by an "Implementation Note"; these are
rather more terse and technical, intended to reassure the more -

skeptical reader as to the implementability of the system.

The prescriptions given here for the use of particular
special characters and notational conventions are arbitrary, of
course: what is essential is the concepts that are represented,
not the puctuation marks which encode them. Examples are shown . .
in uppercase letters for visual distinctiveness in the text, not
as a matter of general preference.

4.2 OBJECTS, CATALOGE ENT E, NAM...

In the total operating environment of a large multi-user
system, there will be many entities which need to be individually
designated -- which need to have names. A large, central, class
of these entities (the ones the system is "about", in some sense)
will have names constructed according to some scheme or principle
of name-building, which embodies assumptions about the uses of -A
names, the accessibility of the named entities, and relationships -

between the entities. The purpose of this paper is to describe
one such scheme, approximately as it has been used in the
National Software Works ("NSW", hereafter) project.

We use the term 'object' for the class of entities to which
the naming scheme applies, to distinguish them from other .

name-bearing entities in the environment. In NSW, the objects
were originally all files, and the naming scheme was thought of
as a "file system"; later it was extended to include tool
programs and devices, collectively called "resources". Some of 0
the non-"resource" entities in the system were user.-
identifications and network hosts.

As far as the system is concerned, an object exists only if
there is a catalogue entry for it in the central resource -
catalogue. Just as in most file systems, when the name of an
object is submitted for the purpose of gaining access to the
object, the interpretation of that name by the system leads to a

T."
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data record which is then passed to some different mechanism for
performing the actual access. In the NSW, this decoupling is
more complete than is usual in single-host operating systems,
since the catalogue information is used to direct an agent
process on some other host (in the general case) to deal with the

actual object.

Hence, from the programming point of view, the name of an
object is really the name of its catalogue entry, in the direct
sense that what is returned from a name-lookup request is (a
pointer to) the catalogue entry found with that name, or the
indication that no such catalogue entry exists.

The present naming scheme is built around the ability to
designate sets of names with a single expression, which is called

a spec. Extending the principle that the lookup of a name
returns the catalogue entry bearing that name (if it exists), the
lookup of a spec returns a set (perhaps empty) of catalogue
entries that bear names belonging to the set.

A spec, then, serves primarily as a designator for a set of
names: given a name and a spec, we can determine whether the
name belongs to the set described by the spec just by comparing
the two as strings. Secondarily, the spec serves to designate
the set of all those catalogue entries which carry names
belonging to the set, as determined by the lookup procedure. And
finally, after another step, the spec can be said to designate
the set of objects whose catalogue entries were returned by the
lookup. Note that the membership of this set of objects will
change from moment to moment as objects are added to and removed
from the system, but the abstract set of names does not change:
a name belongs to the set, or not, independently of whether the
system actually contains any object carrying that name.

A formally correct name can exist before there is a catalogue
entry for it -- as when the user gives a name for an object he is
about to create. Similarly, a catalogue entry may exist before

name to use for an output file is given to a batch program before
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We shall use the term 'namestring' when it is useful to S
emphasize the representation of a name, abstracted from any .. --.

entities it might denote.

4I.3 THE 703R4 OF NAMES

A namestring in -this system consists of a sequence of
identifiers separated by periods. Since the system contains a
great many objects that need names, namestrings tend to be long;
but there are several mechanisms which allow users to employ
short names almost all the time.

The fact that a name is a sequence of identifiers means that
order is significant: the namestrings 'A.B.C' and 'A.C.B' denote
different objects.

There are no implicit objects: The fact that an object with
the name 'A.B.C' exists does not imply the existence of any
object named 'A.B'; and if an object named 'A.B' does exist, it
is just another object in the catalogue -- NOT a "directory"
which "contains" an object named 'C'.

Further, the fact that two namestrings are similar -- such as
'A.B.C' and 'A.B' of the preceding paragraphs -- does not imply
the existence of any system-maintained relationship between the
objects they denote; it might imply that the user (or process)
that gave the newest one its name considers them to be related in
some way, and has chosen to record that relationship in the
choice of the name.

The identifiers making up a namestring are called name
components. 0

The namespace of the system is the set of all namestrings,
subject to whatever pragmatic limits might be imposed on the
length of identifiers and the number of identifiers in a name.

Implementation Note:
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The catalogue is implemented in a quasi-associative memory
scheme -- actually, of course, an inverted-list information
retrieval system. When an object is entered into the system, a
catalogue entry for it is created, and a pointer to that
catalogue entry is added to the inversion-lists for each of the
components in the object's name. The order of appearance of the 9
name components has no effect on this process, so, for instance,
a request to retrieve the object named 'A.B.C' will at first
produce three lists of entry pointers, one for each of the
separate name components, listing those entries whose names
contain that component. These three lists are then intersected,
and the resulting list contains all entries bearing all three
name components, but in any order -- A.B.C, A.B.C.D, A.C.B,
B.A.A.C, and even C.B.A.D.E.

Finally, this list of candidate entries must be culled to
select only the one actually requested -- that is, the one that 0
has all name components in the right order and begins and ends
with the correct components. Each catalogue entry pointed to on
the intersection-list is fetched, and the namestring found there
is compared to the name requested, until an exact match is found.

The fact that a final culling always needs to be done leads
to an interesting aspect of this inverted-list system: The list
of entry-pointers for a particular name component is located by
hashing the text of the identifier, as one might expect; however,
in this system, there is no need to worry about "collisions" (two
distinct identifiers which happen to hash to the same value)
because any "false drops" which an un-disambiguated collision
might generate will automatically be weeded out by the final
culling operation. So it is only necessary to keep one
pointer-list for each possible value of the hashing function, and
not one for each identifier which appears as a name component.

4.4 SETS OF NAMES, SPECS

As we mentioned before, the central theme of this naming
scheme is to provide simple means for designating sets of names,
and hence, of objects. Even for simple operations, it is ®
approximately true that one designates a single object by
describing a set which happens to contain only the object
desired. Most of the time, the individual programer needs to
name only single objects and may not think in terms of sets of
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objects, much less sets of names. Nevertheless, even a S
programmer who always works on one subroutine *at a time needs
such operations as reviewing the names of available objects
("listing the directory"), "connecting" to a new working context,
checking for the presence of new objects of interest in an area
shared with other workers; all of these can be cast in terms of
operations on sets. •

This facility for designating sets of objects is used not
only for repeated performance of an operation on a number of
objects, but also, and more importantly, for assigning access
rights and for defining working contexts. Anyone concerned with
project management or coordination will find frequent use for
these and other operations that take sets of names as operands.

The sets of names which can easily be described in the system
are, unsurprisingly, those which are similar namestrings - .
-- similar, in that they have parts in common.

A designator for a set of names consists of that part of the
naestrings which all members of the set must have in common,
decorated with "wild card" notations for the variable parts. The - .

wild-card symbol is the asterisk, ,0,, and is to be thought of as
standing for any number of name components, including none at

*all. As mentioned above, a designator for a set of names is
called a 'spec'.

A manager or programmer, "designing" a portion of the
namespace, will choose its naming conventions in such a way that
it is easy to write specs that denote the sets of objects that
will be mentioned most frequently. This is what is done in ."
hierarchical systems, of course, except that there, the
similarity relation between namestrings is "has an initial
sequence of name components in common". In this system, the
relation is less restricted, but harder to express in a phrase.
Let's consider some examples:

- The spec 'PROJ3.0' denotes the set of names that begin .
with the component 'PROJ3'.

- The spec '*.SOURCE' denotes the set of names that end

with the component 'SOURCE'.
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- 'PROJ3.SOFTWARE.'.A SPEC' denotes the set of names that 0

begin with the components 'PROJ3' and 'SOFTWARE'
(consecutively in that order) and end with the
component 'ASPEC'.

- 'PROJ3.*.DOC.0' denotes the set of names that begin
with the component 'PROJ3' and contain the identifier
'DOC' as a name component somewhere in the rest of
their names.

- The spec '".PUBLIC.*' denotes the set of names that
contain the component 'PUBLIC'.

- '.PUBLIC.NOTICE."0 denotes the set of names containing
somewhere the two components 'PUBLIC' and 'NOTICE',
consecutively and in that order.

- ".DOC.9.PUBLIC.", denotes the set of names that
contain the components 'DOC' and 'PUBLIC' anywhere, but S
in that order -- at least one 'DOC' must appear to the
left of some 'PUBLIC' in each namestring in the set.

As these examples indicate, the "part" of the namestrings
which appears in the spec for a set need not be a consecutive
stretch of name components, but just a subsequence -- a subset of
the name components, with relative ordering preserved. The spec
serves as a pattern for the namestrings in the set: any
namestring which can be produced by "filling in the blanks" in
the pattern-spec is a member of the set.

To put this "pattern" idea more formally: A namestring
belongs to a given set if it corresponds to the spec for the set
under an order-preserving mapping which matches every name
component in the spec with an identical one in the namestring,
and which maps '*'s in the spec into sequences of zero or more
consecutive components in the namestring. When this
correspondence does hold, we also say that the spec covers the
name.

This correspondence of the '1' with an arbitrary sequence of
name components means that it is meaningless to have two
consecutive "3's in a spec; hence it is considered an error, in
order to remind the user that he has misunderstood something. At
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various times, consideration was given to additional "wild-card" S

symbols to represent space for at least one, or for exactly one,
name component. These were felt to add more complication than
usefulness, though one could imagine namespace structurings for
which they would be valuable.

Implementation Note:

The inverted-list retrieval scheme applies quite
straightforwardly to the retrieval of sets of objects: the lists
of catalogue-entry pointers for all of the name components given . S
explicitly in the spec are intersected, and each candidate in the
resulting list is checked for conformance with the spec under the
correspondence rule given above.

This checking always reduces to testing whether a given spec . 9
covers a given full namestring, and can be done by a rapid string
operation: the most compact form is a simple recursive routine,
where the depth of recursion is equal to the number of
non-terminal '*Is in the spec.

4.5 SPECS AS A VEHICLE FOR RECORDING PERMISSIONS

Thus we have a view of the system namespace as the set of all
permissible namestrings, in which an enormous number of --

overlapping subspaces can be defined by means of simple " . .
string-similarity relations. One of the principal motivations ,,.
for this approach is to be able to use these subspaces as the
domains of application of access permissions.

A permission consists of two pieces of information: a spec
designating a subspace of the system namespace, and a list of one .
or more rights which the holder of the permission may exercise
within that subspace. The rights are of the traditional sort: . -"-

See, Enter, Delete -- a catalogue entry;
Read, Write, Execute -- the content of an object...

When a user is logged in, the system has available the set of
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permissions which that user holds. (The question of how the user
acquired the permissions is an interesting topic for discussion,
but -- as handled in this system -- separate from the subject of
the present paper. See [Warshall 80).)

Whenever the user requests an operation involving a set of
names, the system, in effect, retrieves all the catalogue entries
in its database whose names lie in the designated subspace, then
tests each one to see if it is covered by some permission the
user holds. (In formalistic language, then, the set of entries
retrieved under a given spec for a given user is the intersection
of the set corresponding to the request spec with the union of
the sets described by the spec portions of each of the user's
permissions.)

Implementation Note:

The process of running a permission-check on the object name
in each catalogue entry can be speeded up by preprocessing the
permissions in the user's login-session record so that no
permission will be-checked to verify a particular type of access
if the user also holds another permission with the same access
right and a more inclusive domain. Thus, in the example given in. :.
the next section, the permission with domain
PROJ3.SENSOR.'.SOFTWARE.' would be used for checking only for
accesses requiring Enter, Delete, Write rights, since the
non-destructive See, Read, Execute rights are provided by other
permissions with larger domains.

4.6 NAMESPACE ORGANIZATION - HIERARCHICAL USAGE

It is this use of namespace specs as permission domains which
permits -- and encourages -- a hierarchical partitioning of the7
total namespace: Each major group of users ("project") receives
full rights to one or more subspaces determined by specs with a
single, mnemonic, first name component: 'PROJ3." '. Members of
other projects might hold See and Read rights within this
namespace, but not Enter, Delete, or Write. S

The manager of Project 3 would then divide the project's
namespace into subareas, corresponding (for instance) to the
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structure of the project itself: 'PROJ3.SENSOR."', 0
'PROJ3.ACTUATOR.tt , 'PROJ3.HOUSING."'. Members of the project
would receive permissions giving them the appropriate rights in . ..."
each of these subspaces.

Thus the left-hand end of the names of the objects in a
system tends to look like a simple hierarchical scheme, with all
its advantages of conceptual straightforwardness, and its
difficulties of determining the best order to use for subdividin,
the categories named by the components. In our example, should
the project's namespace first be divided into major subassemblies
of the final product, as suggested above, or should its principal
division be according to the human activities involved -- e.g.,
'ADMINISTRATION', 'ENGINEERING', 'PROGRAM*ING', 'TECH WRITING'?
This problem arises in one form or another whenever a strictly
hierarchical breakdown must be used. (The AIE KAPSE design [AIEK
82] has neatly avoided this problem by allowing the nodes at each
level of its hierarchy to be multi-dimensional.)

Such problems are mitigated in this system, since it is
entirely possible to construct orthogonal subspaces. A
management plan in which the subprojects were organized around
the major subassemblies of interest (sensor, actuator, housing)
would organize its namespace with fixed second name components as
suggested above, then also give permissions to subspaces within
PROJ3.0 that cut across the subproject partitioning. For :-..

instance, a programmer working on the sensor software might have
the following permissions:

PROJ3.*.DOCUMENTATION.* (See, Read)
PROJ3.SENSOR.' (See, Read)
PROJ3. .SOFTWARE.* (See, Read, Execute)
PROJ3.SENSOR.O.SOFTWARE.0 (All rights)

What does the phrase "organizing a namespace" mean in this
environment? There is no way for the manager of Project 3 to
tell the system directly "The only allowable name components
following an initial 'PROJ3' are 'SENSOR', 'ACTUATOR', and
'HOUSING'." A namespace is "organized" by the permissions which
are in existence: initially, the manager of Project 3 is the
only user in the system with (Enter, Write, Delete) rights in the
space PROJ3.'. As project manager, he will be entitled to give
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sub-permissions to members of his project. He may give out any . 0

number of copies of (Enter, Write, Delete) permissions in the
spaces PROJ3.SENSOR.*, PROJ3.ACTUATOR.e , and PROJ3.HOUSING.', but
as long as he refrains from giving out any (Enter, Write, Delete)
permissions within the PROJ3.' namespace with a different second
name component, and doesn't use his broad permissions' to create
any catalogue entries in other subspaces, the namespace is 0
effectively "organized" as intended.

4.7 QUASI-RELATIONAL USAGE

The permissions 'PROJ3.*.DOCUMENTATION.0 '  and
'PROJ3.e.SOFTWARE."t in the previous section hint at the
"quasi-relational" use of the present naming scheme, which was
mentioned in the Introduction. In line with our previous
examples of Project 3's namespace, let's say that the manager
intends his object names to have the general form

PROJ3.<subassembly>.<expertise>.<component>.<details>

where <s'bassembly> may be 'SENSOR', 'ACTUATOR', or 'HOUSING',
<expertise> may be 'HARDWARE', 'SOFTWARE', or 'TESTING', 71
<component> is the proper name of some separable hardware
component or software module, and <details> is any additional
information needed to uniquely specify the object (file,
probably).

This view of the project's namespace is clearly relational in
spirit -- the suggestive nouns in angle-brackets are the names of
the "attributes" in the PROJ3 "relation", and the possible values
of these "attributes" have been listed or described. The manager
will be able at will to view the state of the project along any
of several dimensions, as suggested by these examples:

PROJ3.'.HARDWARE.POWER SUPPLY.*
PROJ3.SENSOR..POSITIONING..
PROJ3.#.HARDWARE.'.SPEC SHEET.*
PROJ3.'.SOFTWARE.'.OBJ
PROJ3.HOUSING.TESTING..
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The system itself, for better or worse, provides no mechanism for
enforcing these quasi-relational conventions: there is no way of
verifying the value to be placed at a given position in the name

,' of a new object (and there is no concept of position except as
*- defined by adjacency and order with respect to anchored elements -

of a spec).

But this is not without its advantages. Imagine the project
a month after its beginning, when the manager and his chief
engineers decide that the Actuator subassembly should "really" be
thought of as two separate work areas, Electrical and Hydraulic, ..

as far as Hardware engineering is concerned, and for some, but
not all, of the Software. In the present naming scheme, there is
no danger in splicing the subspaces PROJ3.ACTUATOR.ELEC.* and
PROJ3.ACTUATOR.HYDR.' into the naming conventions for the
project, without modifying any of the existing operating rules or
changing any specs which might have been written into management
report generators. The fact that, for instance, 'HARDWARE' will 0
sometimes be the third, and sometimes the fourth, component in an
object name doesn't keep it from playing its role as a value of
the <expertise> attribute in the naming scheme.

4.8 OVERLAPPING SPACES, ANCHORED PERMISSIONS

All the permissions discussed so far have had "anchored"
domains -- that is, their domain specs have started with one or
more explicit identifiers, not with asterisks. What about
"unanchored" permissions? For a specific example: We could give
everyone in the system a (See, Read, Execute) permission for the . . ...

domain *.PUBLIC.*; this would allow anyone to "publish" a
document or program merely by including 'PUBLIC' as a component
in the name of an object that they are Entering into the
catalogue.

Note the working of "orthogonal" permissions: a user has the 7'

right to perform any access permitted by any of his permissions.
I don't need Enter rights to *.PUBLIC.* to use the identifier
'PUBLIC' in a name I create: if I have Enter rights to
PROJ3.SENSOR.4.SOFTWARE.*, I am entitled to create an object in
the subspace PROJ3.SENSOR.* as long as its name also contains the
component 'SOFTWARE', and hence I can name an object

*" 'PROJ3.SENSOR.REDUCTION.SOFTWARE.PUBLIC.EDGE FINDER.SOURCE'. And
conversely, no matter how private Project 3 considers its PROJ3."
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space, if outsiders hold a *.PUBLIC.* permission, they can See -
this object, and thence infer the existence of Project 3.

To allow other than very restricted administrative use of
unanchored permissions, then, would be dangerous except in very
open systems. The users would have to learn, and remember, that
the privacy of their project and OWN spaces could be breached by
the use of any of a certain small set of universal words: if
they used any of those words in the name of an object, then that
object would be accessible to users who did not hold any "proper"
permissions within the space.

Nonetheless, even if unanchored permissions are disallowed in
the entire namespace, the use of permissions "floating" relative
to a sub-namespace can be quite advantageous. Project 3's chief
technical writer might well hold an All-rights permission with

domain 'PROJ3.'.DOCUMENTATION." ', which conveys rights cutting
across all sections of the project.

Note also that no new mechanism is required to disallow
permissions starting with an asterisk: such a permission could -

be given only by a user who already holds a shorter (hence, more
inclusive) permission which starts with an asterisk, and
ultimately, by a user who holds a permission with domain ,',. As
long as the system operators refrain from storing that string
anywhere as a permission domain, no user can ever hold a
completely unanchored permission.

KEYWORD RETRIEVAL USAGE

The usefulness of the permission domain
PROJ3.*.DOCUMENTATION.*, regardless of where the component . .
'DOCUMENTATION' might appear in the names (see the earlier
section on Quasi-Relational Usage), is a case of the
retrieval-by-keyword aspect of this naming scheme mentioned in
the Introduction. But we can adduce a couple of clearer
examples:

A simple message system can be constructed from conventions
for the use of this feature. For instance, let's assume that
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messages are kept in the subspace MAIL.*, that in the name of .
each message-object the name component immediately following -
'MAIL' identifies the sender of the message, and that the
remaining name components identify the addressees of the message,
except that the last component is a message ID number (to
distinguish multiple messages from the same sender to the same "
set of addressees). Then user Chris would have the permissions:

MAIL.O.CHRIS.* (See, Read)

MAIL.CHRIS.* (Enter, Delete,. (and perhaps Write))

Chris could then check for the existence of mail by commanding 0

SHOW NAMES MAIL.*.CHRIS.

In actual practice, though, there would be a mail tool to 0
handle the generation of message IDs, to mark messages as each
addressee read them (perhaps by dropping its caller's identifier
from the namestring), and provide all the other services of a
mail program.

S.•

A more realistic example, perhaps, would be the use of the
keyword retrieval abilities of this naming scheme for actual .;-

keyword retrieval:

A namespace is reserved for a literature data base, where the
namestrings in the space are constructed as a set of applicable
desriptors (index terms, ...), plus a document number for
uniqueness. The object itself might be the entire document, or a
short file giving information for obtaining the actual document.

A query of this data base to find information on
microprocessors with multi-tasking abilities would then be of the
form:

SHOW NAMES DBAS.*.MICROPROCESSOR.*.MULTI TASKING.* 0

-, , . . -
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For such a retrieval scheme to work, two conventions would have
to be observed:

- As in any keyword-index system, the indexers and the
users must employ the same set of descriptors;

- Peculiarly to the present system, the set of
descriptors in a namestring or in a query spec must
appear in a standard order -- alphabetic, for instance
-- so that each query component will be checked at a
time when it might occur.

4.9 NAMED ATTRIBUTES

The objects in the system will have a number of properties in
addition to their names which can usefully be kept in their
catalogue entries. Now, the normal working of name-
interpretation in this system requires fetching the catalogue
entries for each member of the set of candidates determined by a
spec, in order to check the entry's namestring against the spec
and the user's permissions. Therefore, it is easy to use these
other properties for performing add~tional checks as part of the
"winnowing" process. * 0

The properties which can be used in this checking process are
called the named attributes of an object, and (in NSW) include: - -

Date and Time of Creation (Entry of this name into catalogue)
Creator's Identification
Date and Time of Last Change (Assignment to present object)
Last Changer's Identification
Hosts where this object is stored/executed/attached
General Type of object (Device, System Tool, Text File, . ) 0

For the sake of having a concrete syntax to use in examples, we
shall say that these attributes have two-letter names ('TC',
OCRh, 'TW', 1WR,, 'HO', 'GT'), and the specification for checking
an attribute is a construction of the form

<attribute name> <relational-operator> <value-string>
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A number of these specifications, separated by semicolons ';' can
be added to the end of a spec, with a slash '/' separating the . -..U
spec proper from the attribute specification.

Thus, for example, the command

SHOW NAMES SYSTEM.#.TOOL.*/HO=RADC-20;TC>831010

will yield a list of all the recently-added system tool programs -

that run on RADC-TOPS20. .

The following characterization of the difference between name
components and named attributes arose, as a kind of folklore
design principle with no satisfactory theoretical basis, in the
course of NSW's evolution:

- Attributes are "understood" by the system -- their
values are calculated by some trusted component -- and -

the system "believes" them -- if a file's HO attribute
says 'RADC-20', it is RADC-TOPS20's NSW File Package
agent process which will be asked to deliver a copy of
the file.

- On the other hand, name components are meaningful to
the human user, but the system can only check them for
order of appearance and identity. The user may choose
to include the identifier 'RADC-20' as one of the name
components of a file, but that doesn't mean that the
file is really stored on RADC-TOPS20.

- An object's name part should uniquely identify it.
That is, no two objects should have exactly the same
sequence of name components and be discriminable only
on the basis of the values of attributes.

It would certainly be possible to relax these strictures if
that seemed desirable -- the values of selected attributes could
be kept in inverted lists, which could then be used in the _
name-lookup process; and users could be allowed to define new
attributes, whose values could be used in subspace selection.
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4.10 CONTE

As we've remarked, it follows from the fact that the system
is to contain a very large number of objects (and from the--.
psychological usefulness of giving similar names to objects which
"belong together") that the names of the objects will tend to be
long. This makes for an awkward human interface, ard techniques
must be found for decreasing the amount of typing a user must do
to refer to objects -- especially the ones most frequently
handled.

In pursuit of this aim, the system includes a feature of 6
named contexts, another use for specs. The user can declare an
identifier to name a subspace, which he defines by means of a
spec. Thereafter, a spec preceded by that context name and a
colon ':I will be interpreted relative to the context namespace.
For example, after the user defines

WK: PROJ3.SENSOR.SOFTWARE. IMAGE. *

the set of candidates retrieved in that context for any spec will
be intersected with that subspace -- effectively, if the userrequests

WK:*.REDUCTION..

the system will respond as if he had typed

PROJ3.SENSOR.SOFTWARE.IMAGE..REDUCTION.

This description of a context definition is incomplete and
over-simple. A context can actually be defined by a list of .*-.. !
specs and other contexts:

- If the list separator used is '+', a true union of the 9
namespaces defined by the elements of the list is -

intended -- this is called a "union context";
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- If the list separator used is ',', a sequential, ;
"first-non-empty" search is intended -- this is called
a "serial context".

For illustration: Project 3's documentation chief would
reasonably have contexts ,

MANS: = PROJ3.*.MANUAL.0 + PROJ3.*.MAN.DRAFT.0
DOCS: = PROJ3.*.DESCRIPTION.0 + PROJ3.*.GUIDE.0  MANS:

and then issue a command

SHOW NAMES DOCS:*.TSET

S
to obtain a list of project documents that were ready for
typesetting.

The serial -- comma-separated -- context is reminiscent of -
the TOPS-20 logical name feature, and the Unix/Multics "search
path" construct. Retrieval from <ctxt>:<spec>, where <ctxt> is a
serial context, works (conceptually) as follows:

1. Construct a candidate list of all catalogue entries
retrieved under <spec>;

2. Intersect the candidate list with the namespace of the
first/next item on the <ctxt> list;

3. If this intersection is empty, go back to step (2)
using the next <ctxt> item, or return an empty result
if there is no next item;

1. If this intersection is not empty, return it as the
retrieval result (and look no further).

Indeed, as with search paths in other systems, this feature
would be used most frequently for disambiguating the name of a
program to be run; but it can be used for any type of access. A
new programmer on the project might be given a context
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.. ,. - " ."

.. . . ..

1,. "



HELP: PROJ3.'.HELP.*, PUBLIC.O.HELP.', SYS:*.HELP.' 0

so that he could ask for help on <any subject> by typing

SHOW NAMES (of) FILES HELP:'.<any_subject>.' 0

and then reading the file(s), if any, whose names were returned.
Notice that this returns, for the particular subject, only the
help file(s) in the subspace "closest" to Project 3; if our new
programmer wanted to see all the help files available to him
-- on a single subject, or in general -- he would need a union
context, not this serial one.

Implementation Note:

There are several interesting alternative choices one might
make in implementing the context feature.

The above sketches of the use of contexts in retrieval
described the process as first: collecting a candidate list from
the "raw" spec; second: pruning that list according to the
context definition; and finally (implicitly) further culling the
list according to the user's permissions.

Clearly, these operations may be performed in any order which
produces the correct result: the intersection of the spec with
the union of the permissions and with the union of the context
terms (or the first K context terms, if the context is serial).
Hence, in cases where the context is liable to involve more
subspaces than the permissions do -- as might well be true for
the "dangerous" permissions (Enter, Delete, Write) -- it would be
more efficient to cull the candidate list according to the
permissions before passing it through the context verification.

Another possible refinement is to examine each "simple" -
context -- a single subspace-designator appearing as an element
in a compound context -- with respect to the set of permissions;
if it happens to be covered by some permission (as will usually
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be the case), it can be specially marked so that the retrieval
process will skip the permissions check for those items which
that simple context contributes to the final result. . .

11,11 TOR FORM OF SIMPLE CONTEXTS

An interesting design controversy arose during NSW's later "
development concerning the desirability of restricting the - ,
syntactic form allowed for (simple) contexts, for the sake of .-

providing the user a simpler conceptual model.

If no restriction is put on the form of a context, then there
is in general no single spec which can express the intersection . o ..

of the namespace denoted by the context and the one denoted by
the spec-part of a request. As the simplest example, assume the
following context definition and request:

SPS: PROJ3.SENSOR.*.SOURCE.6
SHOW NAMES SPS:*.IMAGE."

The request asks for the set of all object names which lie in the
namespace defined by SPS: and which also contain the name
component 'IMAGE'. This amounts to asking for the union of the
namespaces

PROJ3.SENSOR..SOURCE.•.IMAGE.' 
PROJ3.SENSOR. O.IMAGE.*.SOURCE.•

since there is nothing in the definition and request which
constrains the order of appearance of the unanchored components.

Note that this is not an implementation problem: the

retrieval first returns all catalogue entries whose names contain
all of the components in the context and in the spec, taken
together (four name components, in the example). Then each entry
is tested for being covered both by the context and by the
request spec, thus effecting the intersection of those two

namespaces.
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The faction opposing restrictions on the form of simple 0
contexts argued: "The user will soon learn to think of contexts
(even very complex ones) as simply naming different domains of
the total namespace in which he is interested. 'SPS' will mean
'Sensor Program Sources' to him, and he will formulate the
request above when he wants to examine the programs in that area
which might have to do with image handling."

The other faction proposed that simple contexts be restricted
to contain only one asterisk. Under this rule the context
definition above would be illegal; instead, knowing that in this
project 'SOURCE' always appears as the last component of a
program file name (at least when it is used to designate the
source-language form of a program), the user would define

STS: = PROJ3.SENSOR.O.SOURCE . ...

and then, the request

SHOW NAMES STS:*.IMAGE..

would be equivalent to the uncontexted request

SHOW NAMES PROJ3.SENSOR. .IMAGE.'.SOURCE

This faction argued that the user always has in mind a
framework of complete object names, and chooses contexts simply
as an abbreviation mechanism for filling in slots in this
framework. Put another way: when the user issues a request, he
has a mental image of the object names he wants retrieved, and
strives to find the most efficient way to communicate that image
to the system. When context definitions and request specs get
complicated, he will no longer be able to envision what object .7 -
names will be returned.

The implementation can take advantage of this restriction by
literally embedding the request spec in the context with string
operations, then using the result as the single covering pattern
for checking individual namestrings.
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The reader is urged, as an exercise, to work out the
implications under each of the two doctrines, of these
situations: - -- :

- The context definition and the request spec have a name - .

component in common;

- The "request" spec is actually being used to give a new
name to an object;

- The request spec and the context are incompatible,
e.g., they specify different last components. .

To complete the story, the latest version of the NSW system
did adopt the restricted form for contexts, for these three
reasons: 44

1. It was more consistent with the use of contexts in
earlier versions of NSW;

2. The faction in favor of the restriction appeared to
feel more strongly about the question than did the
non-restrictors;

3. The implementation was faster, as described above.

4.12 DEFAULT CONTEXT, NOTATIONS

In the continuing effort to shorten the names the user has to
type, we have reached the stage where he will probably not need
to use more than a two-part name for any single object he refers
to frequently: a context name, followed by some name component
which is distinctive within that context -- 0

WORK:'.PLIF..

But two parts is still one too many for the most frequent uses,
so the system provides for a default context which need not be
named:
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: WORK 0

Then the command 'DELETE :*.PLIF.f, would have the same

meaning as 'DELETE WORK:'.PLIF."1.

The default context functions as a working directory plus
search path; explicit contexts are used for less frequent
accesses to areas outside this working namespace; and specs
without a context are used for wide-ranging browsing in the
system, or in circumstances where the user is given the full name
of an object, and chooses to access it directly, without stopping
to check which of his defined contexts would allow the shortest
possible spec.

This default context notation is still somewhat awkward, and
in NSW an alternative approcah was adopted: Since specs using • .6
the default context are much more frequent than specs with no
context, a prefixed '$' was adopted to signify that no context
was to be used, and the absence of a prefix indicated that the
default context was in effect.

4.13 OWN SPACE

A simple application of the namespace-structuring doctrines
discussed so far would lead to a system which made use of only a
few of the billions of possible first name components -- a couple
for each project, perhaps, plus some public areas (NEWS.*,
BBOARD.0, MAIL.', SYSTEM.', HELP.*, etc.). To make better use of
the namespace, and to help make object names shorter, the system
allows any user (who has not been denied the right to do so) to
have some number of private namespaces, each with a first
component of his own choosing.

The inclusion of this feature provides an illustrative
scenario of the exercise of the naming and permission schemes:
When an OWN space is created -- say, one with initial name
component 'KS' -- a catalogue entry with the name KS. OWN' is
created. In normal use, the underscore character ' ' is "
permissible within name-component identifiers, but not in initial
position, so this name cannot conflict with any user-generated
name. The catalogue entry for KS._OWN doesn't point to any
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0

physical object, but records the identity of the user who created 0
that OWN space. When another user sets out to create an OWN
space for himself, he submits the name component he would like to
use; the system concatenates that identifier with ' OWN' and does
a normal retrieval. If no entries are found, the name is
acceptable, and is assigned to the user requesting it; if one is
found, the user is told that that identifier is already in use as
an OWNspace name, and is asked to choose another.

When an OWN space is created, the user receives an all-rights
permission to that entire namespace -- KS.* in the example above
-- and the guarantee that no one else in the system has ANY 0
rights which cover that space, initially. The user may, of
course, proceed to give out sub-rights in that space, if he
chooses.

There are pragmatic considerations, of course: it's probably 0
advisable to protect (by pre-loading the catalogue) a number of
popular short words and acronyms from usurpation by inappropriate
users. In the NSW, since it lived on the Arpanet, a user who
requested an OWN space name component of four or fewer characters
was asked to affirm that that identifier was his or his
organization's official NIC Ident [DIREC 83].

Since other users will not have even See rights to an OWN
space, how can anyone know it exists? Well, anyone who holds a
permission with See rights for the space *. OWN can examine the
catalogue entries to see which OWN spaces exist, and who owns
each one. It would seem to be a matter of organizational
philosophy to decide whether everyone, or only system maintenance
operators, should hold such a permission.

Note, in passing, that if someone holds a (See, Read)
permission to *. OWN, he can see the catalogue entry named
'KS._OWN' and deduce that the namespace KS.' exists and that I
own it; but this doesn't give him any rights within the space
KS.* -- he can't even tell whether there are any objects in the
space at all!

OWN spaces and contexts are complementary features helping to
shorten typed specs. OWN spaces provide shorter names and
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privacy in the user's personal area; contexts, which are easy to
define and change, provide shorter names for "connecting" to more
widely-shared namespaces. There is no reason for the user not to
set his default context to (some subspace of) his OWN space, if * ..-

that is the most convenient.

4.1 1 SNGULA AND PLURAL SPECS

It was stated near the beginning of this paper that
designating a single object as an argument of some operation is
done by designating a set of objects which happens to have only
one member. That's well and good, but there will be cases where
the user will want to specify whether a command he is giving is
to be executed on every element-of a set or whether he intends
just to abbreviate a name by using a spec which he hopes is
unique within the context. Rather than encoding this difference
in the name of the operation (e.g., "DELETE" vs "MULTIPLE
DELETE"), we have chosen to represent it in the syntactic form of
the argument.

Specs of the form we have been using are actually plural
specs, as long as they contain at least one-asterisk; they are _

used to designate the set of objects in the namespace they
define, just as we have discussed. Thus,

DELETE WS:*.REL

is an instruction to delete all the objects within the context
WS: whose names end with the component 'REL'.

Singular specs are similar, except that the "wild card"
symbol for omitted name components is an ellipsis I.. rather
than an asterisk. In the mind of the user, a singular spec is an
abbreviated designation of a single object, NOT a designation of .

a set of objects. But it does, of course, designate a set: if
that set turns out to have more than one member, the spec was
ambiguous and will have to be "disambiguated" by the user. Thus, p

DELETE WS: ... REL
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is an instruction to delete the object within the context US:
whose name ends with the component 'REL' * If there are no such
objects, the user will be told; and if there are many such
objects, the user will be presented with a numbered list of the
objects, and asked to choose the one to be deleted. If this list

*is longer than some settable threshold, the user will first be
told that fact and given the choice of revising his spec or0
seeing the list (or giving up entirely).

In summary then, if a designator string contains

-NO asterisks and NO ellipses, it is a full object name;

-NO asterisks but SOME ellipses, it is a singular spec,
intended to abbreviate a particular namestring;

-SOME asterisks and NO ellipses, it is a plural spec,9
intended to designate a sub-namespace and the set of
objects whobe names are in that space;

-SOME asterisks and SOME ellipses, it is a plural spec
because of the presence of an asterisk -- but what
meaning can the presence of an ellipsis (instead of,
say, another asterisk) carry?

The answer has mostly to do with the use of plural specs in
operations, which We shall take up in a moment. The idea is that
an asterisk signifies that we "do care" about the name-component

* strings that appear in its place in object names, and the
ellipsis signifies that we "don't care*. The only circumstance
so far discussed in which this distinction could profitably be

*used is in the restricted context debate: Contexts may be
restricted to contain exactly one asterisk (marking the place to
insert the request spec) while ellipses would mark other regions '.

* of the namespace specifier which don't contribute to the set
specification.

Returning to the example of the restricted spec, our user
"knew" that in his project the name component 'SOURCE' was always

* placed at the end of an object name, and defined his context as
* 'PROJ3.SENSOR.O.SOURCE'. More realistically, he would realize
* ~that the programmers are liable to "temporarily" tack on another **
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component like 'OLD', 'lAG', 'COPY'. So to get a good working ,
context for examining the source modules in the various divisions .;.
of the sensor subproject, he could define it as
'PROJ3.SENSOR.5 .SOURCE... ', and pick up the deviant names as
well...' '.-',

. I. 15 PLURAL OPEBRATIO-

The reader will perhaps have noticed that the only examples
. we have given *of commands with plural operands have been

single-operand ones - namely, SHOW NAMES and DELETE. For such - .
commands, there's no question of how to interpret the plural 0
spec:

SHOW NAMES PROJ3.§.DOCUMENTATION.*.TSET

-A
will show the full namestrings of all existing objects in the
system whose names start with the component 'PROJ3', end with the

- component 'TSET', and have the component 'DOCUMENTATION'
somewhere in between. The order in which the names returned from
this request would be displayed is determined by convention:
alphabetically, for instance, or in the order in which the name
interpretation function actually finds the names.

For operations with more than one operand, the interpretation
becomes more delicate (Just as 4t does in other naming schemes).
Consider a programmer who has finished writing and preliminary .
testing of a package of programs to be used with the Actuator
assembly of Project 3. He has been working in a subspace of his
OWN space, and has his default context appropriately defined:

z CAM3.ACTUATOR.0 "

- Now he is ready to "release" his programs for testing, by COPYing
., them into the Testbed space of PROJ3.ACTUATOR."

ACTEST: PROJ3.ACTUATOR.TESTBED."
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He could also have chosen to RENAME the files, thereby
conceptually moving them into the Testbed space; the choice would
depend on project doctrines, or his style of debugging. We'll
also assume that project doctrines require programs for testing
to be recompiled in the Testbed environment, so that he needs
only to copy over the source-language forms of the programs. He
should be able to utter the command

COPY (from) *.SOURCE (to) ACTEST:6.SOURCE

The intended operation is clear. The name-interpretation
function will return the set of all existing names of the form

CAM3. ACTUATOR. .*SOURCE

whereupon, for each of these names, the sequence of name
components mapping into the '1' will be copied into the place of
the , in a new name of the form

PROJ3. ACTUATOR. TESTBED. 0. SOURCE

Thus a copy of the program file
CAM3. ACTUATOR.RHOPOS.INTEGRATOR.SOURCE will be made, and given
the name 'PROJ3.ACTUATOR.TESTBED.4RHO POS.INTEGRATOR.SOURCE'; and
so on for all the other objects in the source namespace.

The interpretation of a source/destination pair of plural
- operands, where there is only one asterisk in each, is clear

enough. If there are several asterisks, the convention of
identifying asterisks by their relative ordering is a plausible
extension of the simpler case:

In our example, assume that the compilation tools of the
project required that the last name component of source files be
an indicator of the language in which the source is written -

A-- .DA, .FTN, .ASEMB. If our programmer had programs in all
.- three languages, he would have commanded:
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COP! (from) :*.SOURCE.* (to) ACTEST:9.SOURCE.# -

A more general and complex scheme was designed and discussed in
"" the course of the NSW project, but did not get close enough to

actual implementation to be considered under the rules for the 0
content of this paper. As an advanced exercise for the 0

' interested reader, it can be stated in terms of compact
generalities:

Adopt a scheme for identifying individual
asterisks, e.g.: 'COPY (from) AB.02.CD.l.EF ..
(to) RS.01.S2.TUV'. Construct the destination
names by substituting for the tagged asterisks
the name-component sequences corresponding to the
same tagged asterisks in the source spec. This
yields a very flexible name-rewriting facility.
For single-operand commands, tagged asterisks can
be used to dictate the order of presentation of
the names covered by the spec, e.g.: 'SHOW
DESCRIPTORS PROJ3. 2.DOCUMENTATION.*3/WR:'.-
would sort the output display first by the
identification of the person doing the most
recent modification, and alphabetically within
groups having the same WR value.

We might venture the remark in passing that most file systems
don't have a very flexible multiple name-changing scheme applying
to sets of file names, so there aren't very good standards for
judging whether a particular proposal is overly complex. The
extension described above does indeed strike people as
complicated.

4.16 1HE FIAL STATE OF NO1

In actual use in NSW, the object naming scheme evolved
"upward" from the idea of abbreviating single file names by using
just one or two name components of high discriminative value.
The implementation was built upon a pre-designed general
information-retrieval system which kept inverted indices for each
individual identifier used as a name component, and so the
implementation technique of skipping collision resolution,
mentioned early in this paper, was not used. -
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The evolution toward plural specs as operands of users'
commands was incomplete; the feature was supported only for the
commands SHOW NAMES and SHOW DESCRIPTORS. The DELETE command
with a plural argument was waiting for a final decision on the
user interaction patterns (since NSW did not have an -undelete"
operation). Plural specs in source/target commands were in the
design stage only.

As mentioned, contexts were restricted to containing a single
asterisk, and the "mixed" form -- allowing ellipses along with
the asterisk -- was not supported. Named contexts were not
offered to the user, although the record-keeping and •
interpretation mechanisms were present. The unnamed default
context feature was provided, with a separate operation for
setting or changing it, or restoring it from the user's profile.

The only <relational operator> allowed in specifying the
values of named attributes was equality, writtem ,:'. A form of
less-than operator was provided by accepting initial-substring
matches on the specified value of date-time attributes.

4. IT AC.OVLEDGDUI.

In the course of the many years' development of NSW, well
over half of the technical personnel of Massachusetts Computer
Associates ("Compass") played some part in the project, and most
of them were involved at one time or another with the "file
system". The original design, started in 1974, was principally .
the work of Stephen Warshall and Robert Millstein, with some
participation by the present author. The first implementation
was done by Stuart Schaffner and Regina Bolduc. The major
developers during the intermediate stages were Ross Faneuf and
Suzanne Sluizer. A major reconsideration of the design occurred
later, with Warshall and Sattley of Compass working with Robert
Thomas and Richard Schantz of Bolt Beranek and Newman ("BBN").
Still further discussions of the design were carried on with
Schantz and William McGregor of BBN and Charles Muntz, Mark
Marcus, and Sattley of Compass. None of the other individuals
mentioned above deserves to be taxed with supporting any point of
view expressed in this paper.
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